Child pages
  • Segmentation Labels and Radiomic Features for the Pre-operative Scans of the TCGA-LGG collection
Skip to end of metadata
Go to start of metadata

Data Citation

Spyridon Bakas, Hamed Akbari, Aristeidis Sotiras, Michel Bilello, Martin Rozycki, Justin Kirby, John Freymann, Keyvan Farahani, and Christos Davatzikos. (2017) Segmentation Labels and Radiomic Features for the Pre-operative Scans of the TCGA-LGG collection. The Cancer Imaging Archive. https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF

Description

This data container describes both computer-aided and manually-corrected segmentation labels for the pre-operative multi-institutional scans of The Cancer Genome Atlas (TCGA) Low Grade Glioma (LGG) collection, publicly available in The Cancer Imaging Archive (TCIA), coupled with a rich panel of radiomic features along with their corresponding skull-stripped and co-registered multimodal (i.e. T1, T1-Gd, T2, T2-FLAIR) magnetic resonance imaging (MRI) volumes in NIfTI format. Pre-operative multimodal MRI scans were identified in the TCGA-LGG collection via radiological assessment. These scans were initially skull-stripped and co-registered, before their tumor segmentation labels were produced by an automated hybrid generative-discriminative method, ranked first during the International multimodal BRAin Tumor Segmentation challenge (BRATS 2015). These segmentation labels were revised and any label misclassifications were manually corrected by an expert board-certified neuroradiologist. The final labels were used to extract a rich panel of imaging features, including intensity, volumetric, morphologic, histogram-based and textural parameters, as well as spatial information and diffusion properties extracted from glioma growth models. The generated computer-aided and manually-revised labels enable quantitative computational and clinical studies without the need to repeat manual annotations whilst allowing for comparison across studies. They can also serve as a set of manually-annotated gold standard labels for performance evaluation in computational challenges. The provided panel of radiomic features may facilitate research integrative of the molecular characterization offered by TCGA, and hence allow associations with molecular markers, clinical outcomes, treatment responses and other endpoints, by researchers without sufficient computational background to extract such features.

 

Publication Citation

Spyridon Bakas, Hamed Akbari, Aristeidis Sotiras, Michel Bilello, Michel Rozycki, Justin S Kirby, John B Freymann, Keyvan Farahani, Christos Davatzikos. "Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features", Nature Scientific Data, 4:170117 doi: 10.1038/sdata.2017.117 (2017).

Download

  • Original DICOM Image Data - 108 subjects (8.5 GB)
  • Processed NIFTI images with segmentations and radiomic features
    • 65 subjects (536 MB)
    • 43 subjects (366 MB) to be used for BRATS 2018 Test Data Set – Available by helpdesk request only until completion of challenge
  • No labels