Child pages
  • C_NMC_2019 Dataset: ALL Challenge dataset of ISBI 2019
Skip to end of metadata
Go to start of metadata


Acute lymphoblastic leukemia (ALL) constitutes approximately 25% of the pediatric cancers. In general, the task of identifying immature leukemic blasts from normal cells under the microscope is challenging because morphologically the images of the two cells appear similar.

Challenge is split into 3 separate phases:

  • Train set composition:

    Total subjects: 73, ALL (cancer): 47, Normal: 26

    Total cell images: 10,661, ALL(cancer): 7272, Normal: 3389

  • Preliminary test set composition:

    Total subjects: 28, ALL (cancer): 13, Normal: 15

    Total cell images: 1867, ALL(cancer): 1219, Normal: 648

  • Final test set composition:

    Total subjects: 17, ALL (cancer): 9, Normal: 8

    Total cell images: 2586

Data Access

Click the  Download button to browse and download the data from Box.

Data TypeDownload all or Query/Filter
Images (BMP, CSV, PDF, 10.44 GB)

Click the Versions tab for more info about data releases.

Detailed Description

Image Statistics



Number of Participants


Number of Studies


Number of Images


Images Size (GB)10.44

Please see the readme for a more detailed description of the dataset: CNMC_readme.pdf

Citations & Data Usage Policy

Users of this data must abide by the Creative Commons Attribution 3.0 Unported License under which it has been published. Attribution should include references to the following citations:

Data Citation

"Gupta, A., & Gupta, R. (2019). ALL Challenge dataset of ISBI 2019 [Data set]. The Cancer Imaging Archive."

Publication Citation

  1. Anubha Gupta, Rahul Duggal, Ritu Gupta, Lalit Kumar, Nisarg Thakkar, and Devprakash Satpathy, “GCTI-SN: Geometry-Inspired Chemical and Tissue Invariant Stain Normalization of Microscopic Medical Images,”, under review.
  2. Ritu Gupta, Pramit Mallick, Rahul Duggal, Anubha Gupta, and Ojaswa Sharma, "Stain Color Normalization and Segmentation of Plasma Cells in Microscopic Images as a Prelude to Development of Computer Assisted Automated Disease Diagnostic Tool in Multiple Myeloma," 16th International Myeloma Workshop (IMW), India, March 2017.
  3. Rahul Duggal, Anubha Gupta, Ritu Gupta, Manya Wadhwa, and Chirag Ahuja, “Overlapping Cell Nuclei Segmentation in Microscopic Images UsingDeep Belief Networks,” Indian Conference on Computer Vision, Graphics and Image Processing (ICVGIP), India, December 2016.
  4. Rahul Duggal, Anubha Gupta, and Ritu Gupta, “Segmentation of overlapping/touching white blood cell nuclei using artificial neural networks,” CME Series on Hemato-Oncopathology, All India Institute of Medical Sciences (AIIMS), New Delhi, India, July 2016.
  5. Rahul Duggal, Anubha Gupta, Ritu Gupta, and Pramit Mallick, "SD-Layer: Stain Deconvolutional Layer for CNNs in Medical Microscopic Imaging," In: Descoteaux M., Maier-Hein L., Franz A., Jannin P., Collins D., Duchesne S. (eds) Medical Image Computing and Computer-Assisted Intervention − MICCAI 2017, MICCAI 2017. Lecture Notes in Computer Science, Part III, LNCS 10435, pp. 435–443. Springer, Cham. DOI: .

TCIA Citation

Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, Phillips S, Maffitt D, Pringle M, Tarbox L, Prior F. The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository, Journal of Digital Imaging, Volume 26, Number 6, December, 2013, pp 1045-1057. DOI: 10.1007/s10278-013-9622-7

Other Publications Using This Data

TCIA maintains a list of publications which leverage TCIA data. If you have a manuscript you'd like to add please contact the TCIA Helpdesk.

Version 1 (Current): Updated 2019/03/26

Data TypeDownload all or Query/Filter
Images (BMP, CSV, PDF, 10.44 GB)

  • No labels