



# Proteogenomic Characterization of Endometrial Cancer

Emily Kawaler
CPTAC Endometrial Cancer Working Group
CPTAC Imaging Special Interest Group Webinar
January 14, 2020

#### **Endometrial Cancer**



#### **Estimated Deaths**

|                                |         |      | Males | Females |                                |         |      |
|--------------------------------|---------|------|-------|---------|--------------------------------|---------|------|
| Lung & bronchus                | 83,550  | 26%  |       |         | Lung & bronchus                | 70,500  | 25%  |
| Prostate                       | 29,430  | 9%   |       |         | Breast                         | 40,920  | 14%  |
| Colon & rectum                 | 27,390  | 8%   |       | X       | Colon & rectum                 | 23,240  | 8%   |
| Pancreas                       | 23,020  | 7%   |       |         | Pancreas                       | 21,310  | 7%   |
| Liver & intrahepatic bile duct | 20,540  | 6%   |       |         | Ovary                          | 14,070  | 5%   |
| Leukemia                       | 14,270  | 4%   |       |         | Uterine corpus                 | 11,350  | 4%   |
| Esophagus                      | 12,850  | 4%   |       |         | Leukemia                       | 10,100  | 4%   |
| Urinary bladder                | 12,520  | 4%   |       |         | Liver & intrahepatic bile duct | 9,660   | 3%   |
| Non-Hodgkin lymphoma           | 11,510  | 4%   |       |         | Non-Hodgkin lymphoma           | 8,400   | 3%   |
| Kidney & renal pelvis          | 10,010  | 3%   |       |         | Brain & other nervous system   | 7,340   | 3%   |
| All Sites                      | 323,630 | 100% |       |         | All Sites                      | 286,010 | 100% |



Cancer Statistics, 2018

### **Histologic Subtypes**





#### **ENDOMETRIOID**

- ~85% of cases
- Usually discovered at a lower grade, lower stage
- Best prognosis



#### **SEROUS**

- ~15% of cases, ~40% of deaths
- Usually discovered at a later stage
- More aggressive, poor survival rate

Murali et al, Classification of endometrial carcinoma: more than two types, *Lancet Oncol.* 15 (2014) e268–78.

### TCGA Molecular Subtyping

- POLE: mutations in exonuclease domain of POLE, ultramutated
- MSI: hypermutated, most have MLH1 promoter methylation, heavy meth throughout, low SCNA
- Copy Number Low: most MSS endometrioid cancers
- Copy Number High: Mostly serous, some high-grade endometrioid



#### **Data Overview**



#### CPTAC Endometrial Carcinoma Cohort

- 83 endometrioid tumors
- 12 serous tumors
- 49 normal uterine samples
  - 18 normal endometrium
  - 25 mixed endometriummyometrium
  - 6 myometrium





Whole genome and exome sequencing

Somatic mutation

Copy number variation

**POLE** status

MSI status



RNA sequencing

Gene expression

circRNA expression

Splice variant

miRNA expression



MS protein analysis

Protein

Protein phosphorylation

Protein acetylation





















#### Effects of TP53 Mutations







Samuel Payne

# p53 Activity and Chromosome 1q Gain







# p53 Activity and Chromosome 1q Gain





### **Effects of CTNNB1 Hotspot Mutations**









Kurnit et al. CTNNB1 (beta-catenin) mutation identifies low grade, early stage endometrial cancer patients at increased risk of recurrence. Mod Pathol 2017 Jul;30(7):1032-1041.

### CTNNB1 Mutations and the Destruction Complex



Huang et al. Mechanism of combined use of vitamin D and puerarin in anti-hepatic fibrosis by regulating the Wnt/β-catenin signalling pathway. World J Gastroenterol 2018; 24(36): 4178-4185



### Acetylation and CTNNB1 Mutations







# Acetylation and CTNNB1 Mutations







Alla Karpova

### CTNNB1 Mutations and Histone H2B Acetylation



# Acetylation, CTNNB1 Mutations, and the Wnt Pathway



# **DNA Methylation and HOX Proteins**







Chen Huang

### Circular RNA and the EMT Pathway









Yongchao Dou

### Circular RNA and the EMT Pathway





### Circular RNA and the EMT Pathway





# Identifying Aberrant Kinases Using Black Sheep

#### Methods:

- Create distributions of normalized phosphosite expression across samples
- Flag outliers (>X IQR from median)
- Repeat for CNA, RNA and protein expression if desired
- Why focus on kinases?
  - Play key roles in cancer development and progression
  - Many highly selective and effective therapies directed against kinases



# Phosphoproteomic Analysis of CNV-High Patients



### C/T Antigens and Putative Neoantigens





# C/T Antigens and Putative Neoantigens





### C/T Antigens and Putative Neoantigens





# **Tumor Immune Subgroups**





#### **Markers of Immune Evasion**





Protein

# **Major Takeaways**

- Comprehensive proteogenomic characterization of 95 endometrial carcinomas
- Proteomic, phosphoproteomic, and acetylomic coidentification of CTNNB1 complex partners and upstream regulators via mutation association analyses
- Proteomics data identifies putative EMT regulator QKI via circRNA
- Multi-omic analysis pinpoints potential therapeutic targets in clinically significant patient subsets
- Immune groupings identify immunotherapy candidates

# How Can Imaging Help?

- Differentiation between serous and endometrioid
- Differentiation between genomic subtypes
- Annotation of specific features characteristic of certain subgroups





#### Where Is The Data?



#### **CPTAC-UCEC**

| \$                 | Radiology<br>Image Statistics | Pathology<br>Image Statistics |
|--------------------|-------------------------------|-------------------------------|
| Modalities         | CT, MR, PT, CR,<br>DX, SR     | Pathology                     |
| Number of Patients | 60                            | 250                           |
| Number of Studies  | 84                            | N/A                           |
| Number of Series   | 1,257                         | N/A                           |
| Number of Images   | 121,109                       | 888                           |
| Images Size (GB)   | 46.9                          | 154                           |

#### TCGA-UCEC

| Image Statistics   |                |  |
|--------------------|----------------|--|
| Modalities         | CT, CR, MR, PT |  |
| Number of Patients | 65             |  |
| Number of Studies  | 226            |  |
| Number of Series   | 912            |  |
| Number of Images   | 75,829         |  |
| Images Size (GB)   | 36.1           |  |

https://www.cancerimagingarchive.net/

Path images for 560 more patients: https://portal.gdc.cancer.gov/projects/TCGA-UCEC

#### The Team



#### **Baylor**

Bing Zhang Yongchao Dou Matthew Ellis Chen Huang Sara R. Savage Bo Wen Zhiao Shi Kai Li

#### **PNNL**

Karin D. Rodland
Tao Liu
Marina A. Gritsenko
Vladislav A. Petyuk
Jamie Moon
Rosalie K. Chu
Ronald J. Moore
Matthew E. Monroe
Rui Zhao
Richard D. Smith

#### **NYU Langone Health**

David Fenyö
Emily Kawaler
Kelly V. Ruggles
Douglas A. Levine
Lili Blumenberg
Wenke Liu
Zhi Li
MacIntosh Cornwell
Hua Zhou
Deborah DeLair

#### **Poznan University**

Maciej Wiznerowicz

#### **University of Miami**

Antonio Colaprico Steven Chen

#### Leidos

Mathangi Thiagarajan

#### **WUSTL**

Li Ding
Daniel Cui Zhou
Alla Karpova
Yige Wu
Song Cao
Matthew Wyczalkowski
Qingsong Gao
Sunantha Sethuraman
David Mutch
Katherine Fuh

#### **The Broad Institute**

Shankha Satpathy
David Heiman
Karsten Krug
Karl Clauser
Ramani Kothadia
Yosef Maruvka
DR Mani
Gad Getz
Michael Noble

#### **BYU**

Samuel H. Payne Amanda E. Oliphant Emily L. Hoskins Samuel Pugh Sean J.I. Beecroft David W. Adams Jonathan C. Jarman

#### **Gladstone Institutes**

Alex Pico

#### **University of Michigan**

Alexey Nesvizhskii Andy Kong Hui-Yin Chang

#### NCI

Henry Rodriguez
Tara Hiltke
Chris R. Kinsinger
Mehdi Mesri
Ana I. Robles
Emily Boja

#### **MD** Anderson

Matthew L. Anderson Suhas Vasaikar

#### **Mount Sinai**

Pei Wang Boris Reva Dmitry Rykunov

#### **Wrocław Medical University**

Andrzej Czekański Marcin Jędryka Rafał Matkowski