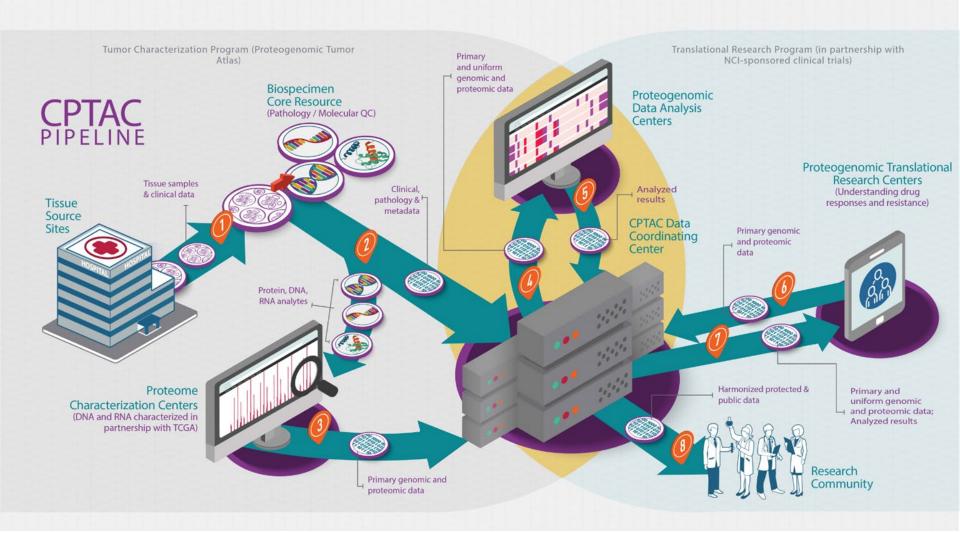
# Easy Data Dissemination


Sam Payne and Caleb Lindgren
Brigham Young University
sam payne@byu.edu

NCI CPTAC award U24 CA210972

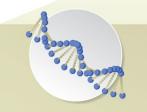








#### **Endometrial Cancer**


Gather clinical cohort

Multi-omics of tumor samples

### CPTAC Endometrial Carcinoma Cohort

- 87 endometrioid tumors
- 13 serous tumors
- 49 normal uterine samples
  - 18 normal endometrium
  - 31 mixed endometriummyometrium





Whole genome and exome sequencing

Somatic mutation

Copy number variation

Structure variation

MSI status



RNA sequencing

Gene expression

Gene fusion

Splice variant

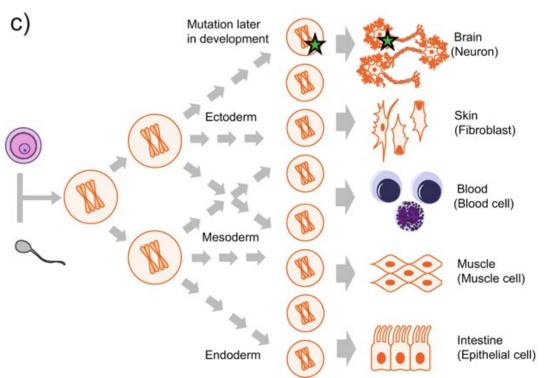
miRNA expression



MS protein analysis

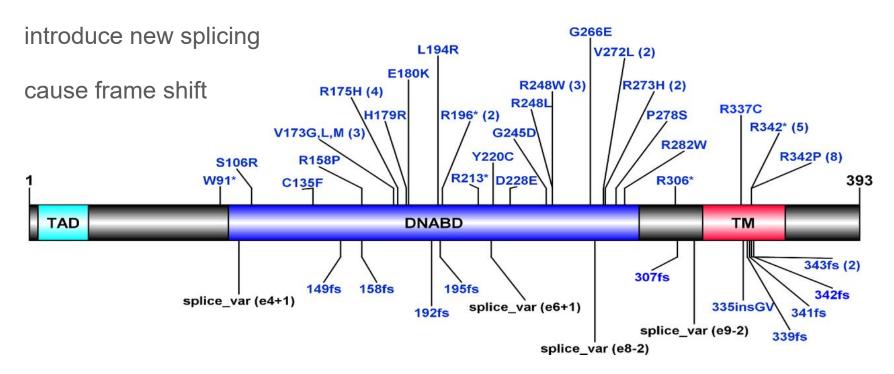
Protein

Protein phosphorylation


Protein acetylation

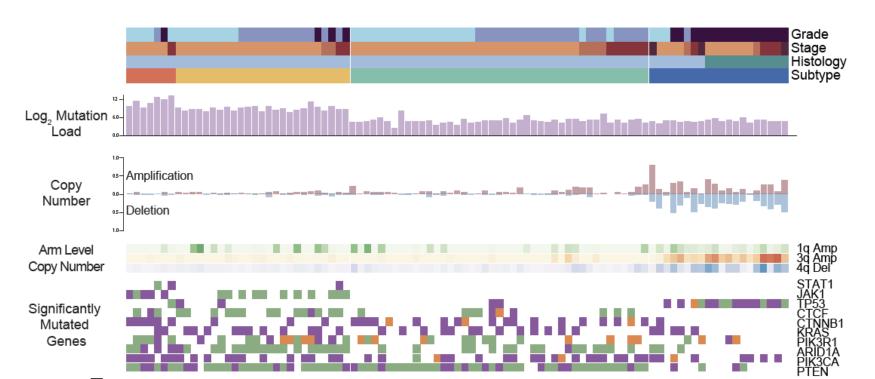
## **Clinical Data**

|           | _         | Proteomics_Tumor_Normal | Country        | Histologic_Grade_FIGO | Myometrial_invasion_Specify | Histologic_type | Treatment_naive | Tumor_purity | Path_Stage_Primary_Tumor-<br>pT | Path_Sta |
|-----------|-----------|-------------------------|----------------|-----------------------|-----------------------------|-----------------|-----------------|--------------|---------------------------------|----------|
| Sample_ID |           | T                       | Helbert Cheber | 5100 mm de 1          |                             | Fadamatulald    | VEC             | Named        | -T1- (5100 IA)                  |          |
| 5001      | C3L-00006 | lumor                   | United States  | FIGO grade 1          | under 50 %                  | Endometrioid    | YES             | Normal       | pT1a (FIGO IA)                  |          |
| 5002      | C3L-00008 | Tumor                   | United States  | FIGO grade 1          | under 50 %                  | Endometrioid    | YES             | Normal       | pTla (FIGO IA)                  |          |
| S003      | C3L-00032 | Tumor                   | United States  | FIGO grade 2          | under 50 %                  | Endometrioid    | YES             | Normal       | pT1a (FIGO IA)                  |          |
| S005      | C3L-00090 | Tumor                   | United States  | FIGO grade 2          | under 50 %                  | Endometrioid    | YES             | Normal       | pT1a (FIGO IA)                  |          |
| S006      | C3L-00098 | Tumor                   | United States  | NaN                   | under 50 %                  | Serous          | YES             | Normal       | pT1a (FIGO IA)                  |          |
| S007      | C3L-00136 | Tumor                   | United States  | FIGO grade 1          | under 50 %                  | Endometrioid    | YES             | Normal       | pT1a (FIGO IA)                  |          |
| S008      | C3L-00137 | Tumor                   | Other_specify  | FIGO grade 2          | under 50 %                  | Endometrioid    | YES             | Normal       | pTla (FIGO IA)                  |          |
| S009      | C3L-00139 | Tumor                   | United States  | NaN                   | 50 % or more                | Serous          | YES             | Normal       | pT3a (FIGO IIIA)                |          |
| S010      | C3L-00143 | Tumor                   | United States  | FIGO grade 1          | Not identified              | Endometrioid    | YES             | Normal       | pT1 (FIGO I)                    |          |
| 5011      | C3L-00145 | Tumor                   | United States  | FIGO grade 1          | under 50 %                  | Endometrioid    | YES             | Normal       | nTla (FIGO IA)                  |          |


#### **Genomics Data**

Somatic mutation - changes to DNA after embryo, present only in some cells



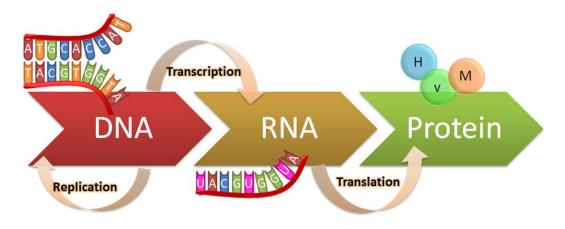

# Single Nucleotide Mutations

change an amino acid



# **Exploring Data**

Look at clinical and genomics data to find mutations that correlate with histology



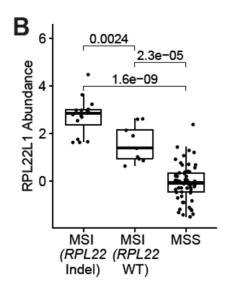

### Mutation and clinical data

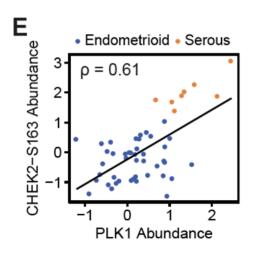
|           | Histologic_type | TP53_Mutation     | TP53_Location | TP53_Mutation_Status | Sample_Status |
|-----------|-----------------|-------------------|---------------|----------------------|---------------|
| Sample_ID |                 |                   |               |                      |               |
| S001      | Endometrioid    | Missense_Mutation | p.R248W       | Single_mutation      | Tumor         |
| S002      | Endometrioid    | Wildtype_Tumor    | No_mutation   | Wildtype_Tumor       | Tumor         |
| S003      | Endometrioid    | Wildtype_Tumor    | No_mutation   | Wildtype_Tumor       | Tumor         |
| S005      | Endometrioid    | Wildtype_Tumor    | No_mutation   | Wildtype_Tumor       | Tumor         |
| S006      | Serous          | Missense_Mutation | p.S241C       | Single_mutation      | Tumor         |
| S007      | Endometrioid    | Wildtype_Tumor    | No_mutation   | Wildtype_Tumor       | Tumor         |
| S008      | Endometrioid    | Missense_Mutation | p.S127Y       | Single_mutation      | Tumor         |
| S009      | Serous          | Nonsense_Mutation | p.R196*       | Single_mutation      | Tumor         |
| S010      | Endometrioid    | Wildtype_Tumor    | No_mutation   | Wildtype_Tumor       | Tumor         |
| S011      | Endometrioid    | Wildtype_Tumor    | No_mutation   | Wildtype_Tumor       | Tumor         |
| S012      | Endometrioid    | Wildtype_Tumor    | No_mutation   | Wildtype_Tumor       | Tumor         |
| S014      | Endometrioid    | Wildtype_Tumor    | No_mutation   | Wildtype_Tumor       | Tumor         |

#### Multi-omics data

DNA, RNA, Proteins and cellular state




DNA, RNA measured with 'sequencing'


Protein measured with mass spectrometry

|           | CTNNB1   | JAK1     | PIK3CA  | PTEN    | TP53      |
|-----------|----------|----------|---------|---------|-----------|
| Sample_ID |          |          |         |         |           |
| S001      | 0.80300  | -0.38200 | -0.4500 | -0.5260 | 0.295000  |
| S002      | 0.42600  | -0.39300 | -0.2150 | -0.8300 | 0.277000  |
| S003      | 0.00891  | -0.09580 | -0.1780 | -0.9410 | -0.871000 |
| S005      | 0.78800  | -0.62700 | -0.3920 | 0.7300  | -0.343000 |
| S006      | -0.40200 | 0.14100  | 0.2870  | -0.3790 | 3.010000  |
| S007      | 1.43000  | -0.22900 | -0.3490 | 0.0293  | -0.148000 |
| S008      | 0.97100  | -0.54800 | -0.3170 | -1.0100 | 0.441000  |
| S009      | -0.25200 | -0.36000 | 0.2820  | 0.1300  | -1.220000 |
| S010      | 0.00979  | 0.30400  | -0.0714 | 0.3900  | -0.082500 |
| 6011      | 0 50100  | 0.44100  | 0 0640  | 0 0201  | A 101AAA  |

# Multi-omics data integration

- B. Protein abundance, mutation status, cancer subtype
- E. Protein abundance, phosphorylation abundance, histology





# cptac package

Python package for Data as a Service

data is 'in code, not an excel file'

```
Below are the dataframes contained in this dataset:
        acetylproteomics
                Dimensions: (144, 10862)
        circular RNA
                Dimensions: (109, 4945)
        clinical
                Dimensions: (144, 26)
        CNV
                Dimensions: (95, 28057)
        derived molecular
                Dimensions: (144, 125)
        experimental setup
                Dimensions: (144, 26)
        miRNA
                Dimensions: (99, 2337)
        phosphoproteomics
                Dimensions: (144, 73212)
        phosphoproteomics gene
                Dimensions: (144, 8466)
        proteomics
                Dimensions: (144, 10999)
        somatic mutation
                Dimensions: (52560, 3)
        somatic mutation binary
                Dimensions: (95, 51559)
        transcriptomics
                Dimensions: (109, 28057)
```

#### Interactive demo of a notebook

View demo at

https://colab.research.google.com/drive/17SMHMDeOUMdkJAd2Xc3Hgvvyqv\_W EW4r

# How to work with imaging data

imaging features as a table (nucleus\_major\_axis, nucleus\_aspect\_ratio, etc.) correlating imaging features with clinical, omics, etc.



#### Journal of Digital Imaging

August 2017, Volume 30, <u>Issue 4</u>, pp 469–476 | <u>Cite as</u>

Predicting Deletion of Chromosomal Arms 1p/19q in Low-Grade Gliomas from MR Images Using Machine Intelligence