Proteogenomic Characterization Reveals Therapeutic Vulnerabilities in Lung Adenocarcinoma

Shankha Satpathy, PhD

On behalf of the CPTAC Lung Adenocarcinoma Working Group

Gillette*, Satpathy*.. Clinical Proteomic Tumor Analysis Consortium

Lung cancer is of unparalleled clinical importance and is still organized by histopathologic subtype

Lung cancer is the leading cause of cancer death worldwide (1.8M cases; 1.6M deaths)

- Non-small cell lung cancer (85%)
 - Adenocarcinoma (40%)
 - Squamous cell carcinoma (30%)
 - Large cell carcinoma (10%)

• Small cell lung cancer (15%)

https://ourworldindata.org/cancer

https://lungevity.org/for-supporters-advocates/lung-cancer-statistics

Lung Adenocarcinoma

Clinical importance:

- Adenocarcinoma is the most common histologic subtype, accounting for ~40% of lung cancer and >500,000 deaths annually
- Most LUAD is smoking related, but it is the least smoking-related lung cancer
- Molecularly targeted therapies have improved treatment for patients with somatically activated oncogenes:
 mutant EGFR, translocated ALK; also translocated RET and ROS1 and mutant BRAF and ERBB2
- Most lung adenocarcinomas not targetable (lack an identifiable driver oncogene or harbor KRAS mutations)

Genomic Landscape

Smoking-related adenocarcinoma (~80%) has an exceptionally **high mutational burden**: 8 – 10 mutations / megabase

~ 1 mutation / megabase in non-smoking related LUAD In total ~18 – 40 genes significantly mutated [TCGA; Tumor Portal]

Oncogene mutations: KRAS (33%), EGFR (14%), BRAF (10%),

PIK3CA (7%), MET (7%)

Tumor suppressor mutations: TP53 (46%), STK11 (17%), KEAP

(17%), NF1 (11%), RB1 (4%), CDKN2A (4%)

RNA-splicing gene mutations: RBM10, U2AF1

Chromatin-modifying gene mutations: SETD2, ARID1A, SMARCA4

Genomic alterations segregate differently in smoking- and nonsmoking-related adenocarcinomas

LUAD Discovery samples represent diverse Country of Origin, Smoking Status and Stage Genomics and proteomics profiles were nearly complete for 110 LUADs & 101 NATs*

Multi-omics clustering (RNA, Protein, Phosphosite, Acetylsite) revealed 5 distinct clusters with unique characteristics for pathways, demography and, mutation status.

Key biological vignettes exemplified by this state-of-the art CPTAC LUAD effort

Global characterization of kinase fusions includes *ROS1*, *RET*, and many others Outlier analysis suggested that more than half were likely functional

Novel *ALK* fusion partners are identified with spanning read support from WGS Tyrosine phosphopeptides offer insights into biology and potential diagnostic & therapeutic targets

Fusion architecture

NAT (n=30)

Tumor (n=34)

Proteogenomic integrative analysis prioritizes Copy number aberrations and highlights dichotomy in mRNA-protein correlation in tumors and NATs

Differential mRNA-Protein correlation between tumors and NATs

Impact of Somatic Mutation on the Proteogenomic Landscape

Impact of recurrent mutations on protein expression and PTM abundance

Deep proteogenomics exposes *KEAP1 / NFE2L2* (*NRF2*) biology and a putative novel *KEAP1 / NFE2L2* regulatory mechanism

KRAS mutation association analysis highlights important outliers seen only in the phospho data *EGFR* mutant tumors are associated with extreme outliers of PTPN11 (SHP2) phosphopeptide Y62

The immune landscape of LUAD shows "cold" and "hot" tumor and intermediate NAT clusters *STK11* mutant, *KRAS* WT tumors are especially "cold"

Neutrophil degranulation is a dominant *STK11* signature seen only in the proteome *Most of these proteins have well-established immunomodulatory functions*

Proteins that drive unsupervised segregation of STK11 mutant samples are enriched for neutrophil degranulation

Differential regulation of neutrophil degranulation signature is exclusively captured in proteome

Evidence of environment exposure and oncogenic signaling in non-smokers

Differential chemical exposure signatures in smokers and non-smokers

Differential pathways between samples with High smoking score vs. low smoking score

up/up
Ferroptosis
MYC response
UV response

Down/down
HIPPO signaling
NF-KB signaling
IL signaling

Data provide a resource for global and subtype-specific LUAD biomarker development

Widely expressed Cancer-testis (CT) antigens are prime candidates as both biomarkers and immunogenic targets

Partial summary of findings

- The mutational landscape of this diverse sample set is largely familiar.
- Phosphoproteomics provides new, actionable insights into KRAS, EGFR, KEAP1-NFF2 and other biology
- The immune landscape of LUAD is highly variable. *STK11* mutant tumors are especially cold. We have mechanistic hypotheses including the contribution of neutrophil degranulation to *STK11* mutant pauciimmune status.
- Cancerization of Normal adjacent tissue in smokers.
- Tumor-normal analyses provide candidate diagnostic markers, immunogenic and oncogenic targets, and potential insights into lung tumorigenesis

Acknowledgements

- Broad Institute
 - Micheal Gillette
 - Karsten Krug
 - Karl Clauser
 - David Heiman
 - Ramani Kothadia
 - Lauren Tang
 - Melanie MacMullan
 - Shayan Avanessian
 - Harry Kane
 - Yifat Geffen
 - Chet Birger
 - Gaddy Getz
 - · D. R. Mani
 - Michael Gillette
 - Steve Carr

- University of Michigan
 - Mohan Dhanasekaran
 - Marcin Cieslik
 - Alexey Nesvizhkii
 - Gil Omenn
 - Arul Chinnaiyan

- Baylor
 - Suhas Vasaikar (MDA)
 - Sara Savage
 - Bing Zhang

- University of Miami
 - Antonio Colaprico

- Mt. Sinai
 - Francesca Petralia
 - Xiaoyu Song
 - Jiayi Ji
 - Boris Reva
 - Azra Krek
 - Pei Wang

- New York University
 - Shaleigh Smith
 - Lili Blumenberg
 - Runyu Hong
 - Wenke Liu
 - Kelly Ruggles
 - David Fenyo

- Washington University
 - Song Cao
 - Wei-wen Liang
 - Lijun Yao
 - Matt Wyczalkowski
 - Li Ding
 - Ramaswamy Govindan

- Johns Hopkins University
 - Kay Li

- National Cancer Institute
 - Ana Robles
 - Mehdi Mesri
 - Emily Boja
 - Henry Rodriguez

Kinase, phosphatase, ubiquitinase and deubiquitinase outlier analyses highlight the importance of post-translational modification data and nominate candidate therapeutic targets

