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Artificial Intelligence (Al) versus human performance for various tasks
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Hosny, Nature Reviews Cancer 2018



Artificial Intelligence Impact Areas within Clinical Imaging

a Clinical radiology workflow

Acquisition Preprocessing

Images
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Image-based tasks

Integrated

Reporting diagnostics
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b Image-based tasks

Detection

Detecting potential abnormalities within
images on the basis of changes in
intensities or the appearance of unusual
patterns, with an emphasis on reducing
false positives
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Characterization

Segmentation

Defining the boundary
extent of an abnormality
for subsequent diagnosis
and treatment planning

Diagnosis
Evaluating and classifying

abnormalities such as
benign vs malignant

Staging

Classifying abnormalities
into multiple predefined
categories such as the
TNM classification of
malignant tumours

Monitoring
o 1919 19
Ti;e —
Change analysis

Tracking object characteristics across
multiple temporal scans for diagnosis as
well as evaluating treatment response

Hosny, Nature Reviews Cancer 2018




Artificial Intelligence (Al) Technologies in Medical Imaging

A. Predefined engineered features + traditional machine learning

feature engineering

f

histogram

L &
texture 'O‘ shape

™

expert knowledge

~

input

selection classification

hidden layers output

B. Deep learning

increasingly higher level features

convolution layers for feature map extraction
pooling layers for dimensionality reduction
fully connected layers for classification

Hosny, Nature Reviews Cancer 2018



Representative CT images of lung cancer
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Tumors are different
Medical imaging can capture these phenotypic differences



Prognostic Radiomic biomarkers across nature — XY\

COMMUNICATIONS *—
cancer types Decoding tumour phenotype by noninvasive

imaging using a quantitative radiomics approach
Aerts HIWL et al, 2014

Main discoveries

e Radiomics analysis based on engineered algorithms on CT
imaging of >1000 patients with Lung or H&N cancer

e Developed and validated a prognostic radiomics signature —— batients
quantifying intra-tumor heterogeneity ol L

e Radiomic signature outperformed volume and was
complementary to TNM staging on all validation datasets

e Imaging-Genomics analysis showed strong correlations between
radiomics and genomics data

Radiomics Features
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Deep quantification of Lung Phenotypes using 3D CNNs
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Hosny et al, PLOS Medicine 2018



Deep quantification of Lung Phenotypes using 3D CNNs

fixed weights during transfer learning |

input convi conv2 pooli conv3 conv4d  pool2 fc fc2 fc3 fc4  softmax
l 5*5*5 3*3"3 3*3*3 3*3*3 3*3*3 3*3"3 13824 512 256 2 classfier

128 256 512 545

_ 64 128 14*14*14 12*12*12 10*10*10
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activation mapping

Hosny et al, PLOS Medicine 2018



survival probability

Deep quantification of Lung Phenotypes using 3D CNNs

RADIOTHERAPY
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Hosny et al, PLOS Medicine 2018



Comparison of prognostic data types and

AUC
(2 year survival)
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Stability of CNN for Prognostic Predictions
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High stability of predictions: intra-class correlation coefficient (ICC) = 0.91

Hosny et al, PLOS Medicine 2018



true positive rate
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Artificial Intelligence Faces Reproducibility Crisis

Code break

In a survey of 400 artificial intelligence papers pre-
sented at major conferences, just 6% included code
for the papers'algorithms. Some 30% included test
data, whereas 54% included pseudocode, a limited
summary of an algorithm.
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Science 2018



Funding: NCI QIN U01 Aerts, NCI ITCR U24 Aerts

Radiomics Platforms

 Radiomics platforms for disease
characterization, Tx response, correlation
with genomic biomarkers

e Evaluation status: QIN single and multi-
site evaluations underway

* Availability status: publicly available
 Supported by NCI QIN and ITCR programs

& rapiomics Wowe  science

Quantitative Radiographic Phenotyping

https://radiomics.io
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Data analysis stages in medical imaging

LOCK LOCK
DATA METHODS

(DESIGN | REPORTING
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Parmar C, Data Analysis Strategies in Medical Imaging, 2018



Data analysis stages in medical imaging

LOCK
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|
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Modelhub: Plug & Predict Solutions for Reproducible Al Research

[ MODELHUB

www.modelhub.ai
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portable tool agnostic



How it Works

aCo
test drive
framework ——— for everyone
run locally or remotely and quickly
frontend (optional) explore the model in your broswer
web interface + notebook
A : =0
contrib_src |
contributor pre-/post-processing, sample | N
data and models . Jupyter notebook
published models for researchers
backend run modelhub dockers locally and
modelhub engine + web app test on your own data
@ runtime environment < )
API
for developers

deploy modelhub dockers and make API
calls for model information & predictions
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