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Artificial Intelligence (AI) versus human performance for various tasks

Hosny, Nature Reviews Cancer 2018

HUMAN

Early 
Efforts
AI with sub-human 
performace is 
occasionally used in 
commercial 
expert-systems with 
varying degrees of 
utility. 

Narrow task-specifc AI 
starts to match and, in 
some instances, exceed 
human performance in 
tasks including 
lipreading3, driving 
vehicles6 , playing Go7, 
and classifying skin 
cancer10.

General AI exceeds 
human performance 
and reasoning in 
complex tasks 
including writing 
best-sellers and 
performing surgery. 
Human intelligence 
improves as we learn 
from AI.

Current
State

Future 
Outlook

AI

AI with sub-human 
performance is 
occasionally used in 
commercial 
expert-systems with 
varying degrees of 
utility 



Artificial Intelligence Impact Areas within Clinical Imaging

Hosny, Nature Reviews Cancer 2018
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Artificial Intelligence (AI) Technologies in Medical Imaging

Hosny, Nature Reviews Cancer 2018



Representative CT images of lung cancer

Tumors are different
Medical imaging can capture these phenotypic differences 



Prognostic Radiomic biomarkers across 
cancer types

Main discoveries
● Radiomics analysis based on engineered algorithms on CT 

imaging of >1000 patients with Lung or H&N cancer
● Developed and validated a prognostic radiomics signature

quantifying intra-tumor heterogeneity 
● Radiomic signature outperformed volume and was 

complementary to TNM staging on all validation datasets 
● Imaging-Genomics analysis showed strong correlations between 

radiomics and genomics data
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Deep quantification of Lung Phenotypes using 3D CNNs

Hosny et al, PLOS Medicine 2018



Deep quantification of Lung Phenotypes using 3D CNNs
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Deep quantification of Lung Phenotypes using 3D CNNs

Hosny et al, PLOS Medicine 2018
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Stability of CNN for Prognostic Predictions

High stability of predictions: intra-class correlation coefficient (ICC) = 0.91 
Hosny et al, PLOS Medicine 2018



Spatial Information for CNNs predictions

Submitted



Artificial Intelligence Faces Reproducibility Crisis

Science 2018 



Radiomics Platforms
• Radiomics platforms for disease 

characterization, Tx response, correlation 
with genomic biomarkers

• Evaluation status: QIN single and multi-
site evaluations underway

• Availability status: publicly available
• Supported by NCI QIN and ITCR programs

https://radiomics.io

Funding: NCI QIN U01 Aerts, NCI ITCR U24 Aerts



Pathological Response Prediction by Radiomic Data From Primary and Lymph Nodes in NSCLC
Thibaud Coroller

Data analysis stages in medical imaging

Parmar C, Data Analysis Strategies in Medical Imaging, 2018



Data analysis stages in medical imaging

Parmar C et al , Data Analysis Strategies in Medical Imaging, 2018









PAGE 
20

05/12/20
18

Computational Imaging &
                 Bioinformatics Laboratory

www.cibl-harvard.org


