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Pathology Image Driven Decision Support QU tom oo

e Improve reproducibility in traditional Pathology
assessments (e.g. Gleason grade, NSCLC subtypes)

e Precise scoring of well known criteria ( tumor
infiltrating lymphocytes, mitoses and IHC staining)

e Development of novel computational methods to
employ Pathology image information to predict
response to cancer treatment and outcomes.
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What is the Gleason grade or Gleason score? What do
the numbers in the Gleason score mean, for example
3+4=7 or 3+3=6?

Pathologists grade prostate cancers using numbers from 1 to 5 based on how much the cells in the cancerous
tissue look like normal prostate tissue under the microscope. This is called the Gleason system. Grades 1 and 2
are not often used for biopsies — most biopsy samples are grade 3 or higher.

e |f the cancerous tissue looks much like normal prostate tissue, a grade of 1 is assigned.
e |f the cancer cells and their growth patterns look very abnormal, a grade of 5 is assigned.

e Grades 2 through 4 have features in between these extremes.

Since prostate cancers often have areas with different grades, a grade is assigned to the 2 areas that make up
most of the cancer. These 2 grades are added to yield the Gleason score (also called the Gleason sum). The
highest a Gleason score can beis 10.



Major treatment decisions can hinge on subjective T ——
judgements

The ASCO Post

University

A Gleason 6 Tumor: Is It Cancer, and
Should It Be Treated?

Gleason 6 Prostate Cancer:

cancernetwork  Serious Malignancy or

Toothless Lion?

By Herbert Lepor, MD and Nicholas M. Donin, MD
Jan 15, 2014



PROSTATE CANCER

DISCOVERY

"Tumors with a Gleason score of 4 + 3 are more aggressive and predictive of advanced disease at the time of
surgery, compared to Gleason 3 + 4 tumors," explains Mark L. Gonzalgo, M.D., Ph.D., assistant professor of urology
and oncology. In a recent study, published in the journal Urology, Gonzalgo and urologists Alan W. Partin, M.D.,
Ph.D., and Patrick C. Walsh, M.D., investigated the relationship between a man's biopsy Gleason score, the Gleason
score in the entire prostate (the specimen removed during radical prostatectomy) and the recurrence of PSA
among men who were diagnosed with Gleason 7 cancer in a needle biopsy.

BJ U | Editorial: Current Gleason score 3 + = T: has it lost its
30U Infomationa significance compared with its historical counterpart?

01 Jun 2016



Early Steps to Pathology Computer Aided Classification
2005-2010

BISTI/NIBIB Center for Grid Enabled Image Analysis - P20 EB000591, PI Saltz
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Neuroblastoma Classification
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CANCER 2003; 98:2274-81



Multi-Scale Machine Learning Based Shimada

Classification System
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Background Identification

Image Decomposition (Multi-
resolution levels)

Image Segmentation
(EMLDA)

Feature Construction (2nd
order statistics, Tonal
Features)

Feature Extraction (LDA) +
Classification (Bayesian)

Multi-resolution Layer
Controller (Confidence
Region)



Patch-Based Convolutional Neural Network for
—— Whole Slide Tissue Image Classification -

Le Hou, Dimitris Samaras, Tahsin M. Kurc, Yi Gao, James E. Davis, Joel H. Saltz; The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016, pp. 2424-2433
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SUNY

Confusion Matrix: OA is very hard even for pathologists GBM oD OA DA, Al AQD
Glioblastoma, Grade IV (GBM) 214 2 1

Oligodendroelioma, Grade |l ({OD) 1 a7 27 1

Oligoastrocvtoma, Grade Il & 111 (OA) 1 18 40 3 1

Diffuse Astrocytoma, Grade Il [DA]) 3 3] 20 1
Anaplastic Astrocytoma, Grade 111 [AA) 3 3 4

Anaplastic Oligodendroglioma, Grade |l (AOQ) 2 3 1

Le Hou, Dimitris Samaras, Tahsin Kurc, Yi Gao, Liz Vanner, James

Davis, Joel Saltz
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Digital Pathology as Precision Medicine

e Statistical analyses and machine learning to link Radiology/Pathology
features to “omics” and outcome biological phenomena

e Image analysis and deep learning methods to extract features from
iImages

e Support queries against ensembles of features extracted from multiple
datasets

o Identify and segment trillions of objects - nuclei, glands, ducts, nodules,
tumor niches

e Analysis of integrated spatially mapped structural/”omic” information to
gain insight into cancer mechanism and to choose best intervention



Quantitative Feature Analysis in Pathology: Emory In Silico
Center for Brain Tumor Research (Pl = Dan Brat, PD= Joel
Saltz) 2009 - 2013



Can we use image analysis of TCGA GBMs TO INFORM
diagnostic criteria based on molecular or clinical endpoints?

Nuclear Qualities

Application: Oligodendroglioma Component in GBM



Integrative
Morphology/”omics”

Quantitative Feature Analysis in
Pathology: Emory In Silico Center
for Brain Tumor Research (Pl =
Dan Brat, PD= Joel Saltz)

NLM/NCI: Integrative
Analysis/Digital Pathology
R0O1LM011119, RO1LM009239
(Dual Pls Joel Saltz, David Foran)

Marcus Foundation Grant — Ari
Kaufman, Joel Saltz
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Survival

Nuclear Segmentation

\
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Clinical / Genomic analyses

Feature indices

g &§ 8 B

Feature Segmentation

Area, Perimeter,
Circularity,...

Cytoplasmic
Contrast,...

Cluster samples based
on feature values
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Spatial Organization and Molecular Correlation
of Tumor-infiltrating Lymphocytes
Using Deep Learning on Pathology Images

Joel Saltz,’ " Rajarsi Gupta,’* Le Hou,” Tahsin Kure,' Pankaj Singh,” Vu Mguyen,” Dimitris Samaras,” Kenneth R. Shroyer,*
Tianhao Zhao,* Rebecca Batiste,” John Van Amam,” The Cancer Genome Atlas Research Network, llya Shmulevich,®
Arvind U.K. Rao,” " Alexander J. Lazar,” Ashish Sharma,” and Vésteinn Thorsson® %"

http:/lwww.cell.com/cell-reports/pdf/S2211-1247(18)30447-9.pdf

e Stony Brook, Institute for Systems Biology, MD Anderson, Emory group
e TCGA Pan Cancer Immune Group - led by ISB researchers

e Deep dive into linked molecular and image based characterization of
cancer related immune response



Correlate with Clinical
and Genomic Data

XD

13 Cancer Types
~5000 Participants

Extract,
Refine

e Deep learning based
computational stain for staining
tumor infiltrating lymphocytes
(TILs)

oTIL patterns generated from
4,759 TCGA subjects (5,202 H&E
slides), 13 cancer types

eComputationally stained TILs
correlate with pathologist eye and
molecular estimates

o TIL patterns linked to tumor and
immune molecular features, cancer
type, and outcome
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Anne Zhao — Pathology Informatics
Le Hou — Graduate Student Biomedical Informatics, Pathology
Computer Science (now Surg Path Fellow SBM)

Deep Learning
and Lymphocytes:
Stony Brook
Digital Pathology

Comprersence " Tralnee Team el oA, Pethoaty




Importance of Immune System in Cancer Treatment and Progn®sis: "

Tumor spatial context and cellular heterogeneity are important in cancer
prognosis
Spatial TIL densities in different tumor regions have been shown to have

high prognostic value - they may be superior to the standard TNM
classification

Immune related assays used to determine Checkpoint Inhibitor immune
therapy in several cancer types

Strong relationships with molecular measures of tumor immune response
— results to soon appear in TCGA Pan Cancer Immune group publications

TIL maps being computed for SEER Pathology studies and will be
routinely computed for data contributed to TCIA archive

Ongoing study to relate TIL patterns with immune gene expression
groups and patient response



Training, Model Creation

e Algorithm first trained on image patches
e Several cooperating deep learning algorithms generate heat

maps

e Heat maps used to generate new predictions

Pathologist review B drackiatihEs _
< Images and mark regions P Lymphocyte and Necrosis
. —»| from marked ..
with lymphocytes and : CNN Training
. regions
NeoLasls Patch Size: f
' it i o | | Retrain CNN after pathologist |
kj)/ecz;’;js);t5f)ox55%0i(;g‘z review and correct predicted TILs
-

~ o Companion molecular statistical data analysis pipelines

\

5
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Trained
CNNs




Training, threshold adjustment, quality control QY Sony roak

‘ Acquire Lymphocyte Selection
Thresholds using TIL-Map Editor

Use
SR (| | | Trained | IFEREI [ coooos | | mamee| | mevienrte ] thvesholas
< ' ¢ S 4 CNNs Mas?i;z;a" orunder- | accuracy of —>| thresholds from | | 1O obtain
‘ 1ie predicted initial a sampling of 8 TIL Maps !
| lymphocyte prediction TILs/group :
Unlabeled set of ) /|
TIL Maps for

WSI H&E Images .
(5455 images, Clustering and
13 cancer types) Analysis
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Tools: Quantitative Imaging Pathology - QuIP Tool Set

Visual Feature Analytics View (FeatureScape)

Segmentation
Visualization
View

Analysis View

[ Application

Service
Data Group Image Analysis Group
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Interactive Deep Learning Training Tool QY stony Brooi
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Validation — Stratified sampling from 5K whole slide images "
Arvind Rao, expert in spatial biostatistics (U Michigan)
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Quantitative Assessment of TIL Fractions QU Stony Brook
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Characterization of TIL Pattern and Relationship to Molecular
Immune Subtype

Standardized approach for TiLs evaluation in solid tumors
Step 1: Select tumor area

e The pattern of immune infiltrate

e Division of immune infiltrate between different d
compartments

e Does it surround tumor region? Present in
tumor, invasive margin?

e Assessing Tumor-infiltrating Lymphocytes in
Solid Tumors: Step 3: Scan at low magnification

e A Practical Review for Pathologists and Proposal
for a Standardized Method From the
International Immunooncology Biomarkers

Working Group - part 1 and 2 - Adv Anat e
Pathol Volume 24, Number 5, September 2017 Y R
(figure to right from that reference) L

Step 5: Assess the percentage TiLs
0-10% stromal TiLs % Stro 50-90% stromal TiLs
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SKCM TCGA-D3-A2JF-062-00-DX1
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SKCM TCGA-D3-A2JA-062-00-DX1
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TIL Pattern Descriptions e
Qualitative (Alex Lazar, Raj Gupta) Quantitative - Arvind Rao
o "Brisk, diffuse’’ diffusely infiltrative TILs _ _
scattered throughout at least 30% of the e Agglomerative clustering
i':;solf tgzﬁzn]?ié,%’Sggnzaslis’e); e Cluster indices representing
° ’ - - - -
boundaries bordering the tumor at its C!USter_ numberr den5|tYI Cluster
periphery (1,185); size, distance between clusters
* “Nonbrisk, multi-focal' loosely e Traditional spatial statistics
scattered TILs present in less
e than 30% but more than 5% of the area Measures
of the tumor (1,083); e R package clusterCrit by
o ;‘hNon-I‘I]JI‘iStkI, fO(éﬁl" fé)(l)‘/TtI)LSi.: scattteresh Bernard Desgraupes - Ball-
roughout less than 5% but greater than . )
1% of the area of the tumor (874); Hall, Banfle'_d Raftery_, C Ir!dex,
e “None’” < 1% TILS - in 143 cases and Determinant Ratio indices
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Tumor Type | p-value
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0.013075
0.012113
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TCGA Pan Cancer Atlas -— Immune Landscape of Cancer

Immunity

The Immune Landscape of Cancer

e Six identified immune subtypes span
cancer tissue types and molecular
subtypes

e Immune subtypes differ by somatic
aberrations, microenvironment, and
survival

e Multiple control modalities of
molecular networks affect tumor-
immune interactions

e These analyses serve as a resource
for exploring immunogenicity across
cancer types

http://www.cell.com/immunity/fullt
ext/S1074-7613(18)30121-3
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New Results: CNN - Tumor Segmentation QY Sony roak
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Pathomics — Nuclear Features

B Cell morphology and architectural
patterns of tumor growth are critical in
cancer diagnosis

B The nucleus-level features, such as size, c —— —
. : : 6% - - N b
shape and intensity, are used in cancer e —= ¥ < .
diagnosis and classification of cancer Most Oligo Dligo-Astro Continuum | Most Astro
subtypes

36/15
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Nuclear Pathomics Features

- Size
shape
texture
intensity

B H&E stained tissue slides: Nuclei are colored blue/purple

B Nucleus segmentation is applied to delineate the boundary of the nuclei

B Nucleus-level features are extracted from segmented object for downstream
guantitative analyses

37/15



Nuclear Segmentation/Labeling Methods QR stom Brook
Development

e Baseline - traditional numerical methods: level
set/mean shift

e Convolutional Neural Network nuclear segmentation
algorithms

e GAN based CNN nuclear segmentation algorithm
designed to minimize training requirements

e Deep learning based nuclear classification methods



Deep Learning: Synthetic Tissue/GAN based Nuclear  Wgourex
Segmentation Algorithm

Blurring nuclear
boundary and modeling
“~  chromatin clearing

Inpainted nuclei

Real imag Super segmentation

patch mask derived from color free patch
Ralldc?m. Generative
polygons jointly Adversarial
sampled from a b o Ready for Network More
predefined T " refinement realistic
distribution : @~ Patch
Generated Randomly Synthesized
segmentation mask diluted mask patch with
ground truth
segmentation
mask

Texture and color
obtained from
real patches

Patch with texture
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Using Machine Learning to Critigue Segmentation Results

B Automatically select low & high gain values for each tissue region

B Investigate machine learning algorithms:
— Random Forests
— Support Vector Machine

— Convolutional Neural Network

B |nvestigate impact of active learning process

B PhD Thesis — Si Wen co supervised by Joel Saltz and Tahsin
Kurc

40/15



ACTIVE Learning

caMic Segmentation Quality App
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Label the uncertain patches
/\/ with high threshold value

f\/ Label the uncertain patches

with low threshold value
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the predicted probability
of low threshold value

0 Patches to choose result Uncertain Patches to choose result
from high threshold value Patches from low threshold value

v

Active Learning Iterations




Consortia QI stony Broo

e NCI Quantitative Imaging for Pathology (QulIP): Stony Brook, Emory,
MD Anderson, Institute for Systems Biology, Oak Ridge

e NCI SEER Pathology: Stony Brook, Emory, Rutgers, University of
Kentucky (three Cancer registries)

e Cancer Imaging Archive: Arkansas, Stony Brook, Emory (Stony Brook
leads Pathology component)

e Virtual Tissue Repository: Led by NCI SEER; Stony Brook, Emory

e TIES Research Network - Integrated Pathology text and imaging:
Pittsburgh, Stony Brook main sites, 6+ other sites (Stony Brook leads
digital Pathology)



Tools to Analyze Morphology and Spatially Mapped @ som e
Molecular Data - U24 CA180924

o Specific Aim 1 Analysis pipelines for multi-
scale, integrative image analysis.

e Specific Aim 2: Database infrastructure to
manage and query Pathomics features.

o Specific Aim 3: HPC software that targets
clusters, cloud computing, and leadership
scale systems.

e Specific Aim 4: Develop visualization
middleware to relate Pathomics feature and
image data and to integrate Pathomics image
and “omic” data.



Methods and tools for integrating pathomics data igto: ..
cancer registries
Saltz, Sharma, Foran and Durban

e Enhance SEER registry data with machine learning based classifications
and quantitative pathomics feature sets.

e The New Jersey State Cancer Registry, Georgia and Kentucky State
Cancer Registries

e Prostate Cancer, Lymphoma and NSCLC

e Repository of high-quality digitized pathology images for subjects
whose data is being collected by the registries.

e Extract computational features and establish deep linkages with
registry data, thus enabling the creation of information-rich, population
cohorts containing objective imaging and clinical attributes



Cancer Imaging Archive - Integration of Pathology and  g;....s..

University

for Community Clinical Studies

@ ANCER

GING ARCHIVE

Radioloc¢

TCIA encourages and supports the cancer
imaging open science community by hosting and
managing Findable
Get images in your apps Accessible, Interoperable, and Reusable (FAIR)
With the new ST iImages and related data.
ECLAREST AP Clark, et al. J Digital Imag 26.6 (2013): 1045-1057.

imaging apps that leverage TCIA using the new REST API. Examples hon and ailable t
help you get started. in Pyt Java are av. to

GANGER

CANOME  ABOUTUS  WWARE YOURDATA  DOWNLOAD DATA

el 0!

TCIA Collections

and vany

http://www.cancerimagingarchive.net/



TCIA sustainment and scalability QN stony Brooi
Platforms for quantitative imaging informatics in precision
medicine

Prior, Saltz, Sharma -- U24CA215109-01

e Identify quantitative imaging phenotypes across scale through the use of
Radiomic/Pathomic analyses

o Well-curated data for algorithm testing and validation.
e Integrative Radiology/Pathology Image-Omics studies

e Extend TCIA to support its rapidly growing user community and continue
to promote research reproducibility and data reuse in cancer precision
medical research.
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Now this is not the end. It is not even the
beginning of the end. But it is, perhaps, the end
of the beginning.

(Winston Churchill)

izquotes.com




ITCR Team QN stony Brook
Stony Brook University Emory University
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Alina Jasniewski Dave Pugmire
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Tammy DiPrima
Andrew White Yale University
Le Hou Michael Krauthammer
Furgan Baig
Mary Saltz Harvard University
Raj Gupta Rick Cummings
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