Child pages
  • NSCLC-Radiomics-Genomics

Versions Compared


  • This line was added.
  • This line was removed.
  • Formatting was changed.





This collection contains images from 89 non-small cell lung cancer (NSCLC) patients that were treated with surgery. For these patients pretreatment CT scans, gene expression, and clinical data are available. This dataset refers to the Lung3 dataset of the study published in Nature Communications.

 In short, this publication applies a radiomic approach to computed tomography data of 1,019 patients with lung or head-and-neck cancer. Radiomics refers to the comprehensive quantification of tumour phenotypes by applying a large number of quantitative image features. In present analysis 440 features quantifying tumour image intensity, shape and texture, were extracted.  We found that a large number of radiomic features have prognostic power in independent data sets, many of which were not identified as significant before. Radiogenomics analysis revealed that a prognostic radiomic signature, capturing intra-tumour heterogeneity, was associated with underlying gene-expression patterns. These data suggest that radiomics identifies a general prognostic phenotype existing in both lung and head-and-neck cancer. This may have a clinical impact as imaging is routinely used in clinical practice, providing an unprecedented opportunity to improve decision-support in cancer treatment at low cost.

The dataset described here (Lung3) was used to investigate the association of radiomic imaging features with gene-expression profiles. The Lung2 dataset used for training the radiomic biomarker and consisting of 422 NSCLC CT scans with outcome data can be found here: NSCLC-Radiomics.

For scientific inquiries about this dataset, please contact Dr. Hugo Aerts of the Dana-Farber Cancer Institute / Harvard Medical School (


Localtab Group

titleData Access

Data Access

Click the Download button to save a ".tcia" manifest file to your computer, which you must open with the NBIA Data Retriever. Click the Search button to open our Data Portal, where you can browse the data collection and/or download a subset of its contents.

Data TypeDownload all or Query/Filter
Images (DICOM, 6.6GB)


Lung3 clinical (CSV)
Gene Expression (web)

Click the Versions tab for more info about data releases.

titleDetailed Description

Detailed Description

Collection Statistics




Number of Patients


Number of Studies


Number of Series


Number of Images


Image Size (GB)6.6


Gene-expression Data

Corresponding microarray data acquired for the imaging samples are available at National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (Link to GEO: The patient names used to identify the cases on GEO are identical to those used in the DICOM files on TCIA and in the clinical data spreadsheet.

Clinical Data

Corresponding clinical data can be found here: Lung3.metadata.xls.

Please note that survival time is measured in days from start of treatment. DICOM patients names are identical in TCIA and clinical data file.

titleCitations & Data Usage Policy

Citations & Data Usage Policy 

This collection may not be used for commercial purposes. This collection is freely available to browse, download, and use for scientific and educational purposes as outlined in the Creative Commons Attribution 3.0 Unported License.  See TCIA's Data Usage Policies and Restrictions for additional details. Questions may be directed to

Please be sure to include the following citations in your work if you use this data set:

titleData Citation

Aerts, Hugo J. W. L., Rios Velazquez, Emmanuel, Leijenaar, Ralph T. H., Parmar, Chintan, Grossmann, Patrick, Carvalho, Sara, … Lambin, Philippe. (2015). Data From NSCLC-Radiomics-Genomics. The Cancer Imaging Archive.

titlePublication Citation

Aerts, H. J. W. L., Velazquez, E. R., Leijenaar, R. T. H., Parmar, C., Grossmann, P., Cavalho, S., … Lambin, P. (2014, June 3). Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nature Communications. Nature Publishing Group. (link)

titleTCIA Citation

Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, Phillips S, Maffitt D, Pringle M, Tarbox L, Prior F. The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository, Journal of Digital Imaging, Volume 26, Number 6, December, 2013, pp 1045-1057. (paper)

Other Publications Using This Data

TCIA maintains a list of publications that leverage our data. At this time we are not aware of any additional publications based on this data. If you have a publication you'd like to add, please contact the TCIA Helpdesk.


Version 1 (Current): Updated 2014/07/02

Data TypeDownload all or Query/Filter
Images (DICOM, 6.6GB)


(Requires the NBIA Data Retriever.)

Lung3 clinical (CSV)
Gene Expression (web)