Child pages
  • LGG-1p19qDeletion

Versions Compared


  • This line was added.
  • This line was removed.
  • Formatting was changed.


Localtab Group

titleData Access

Data Access

Choosing the Download option will provide you with a file to launch the TCIA Download Manager to download the entire collection. If you want to browse or filter the data to select only specific scans/studies please use the Search By Collection option.

Data TypeDownload all or Query/Filter
Images (DICOM, 2.7GB)


Segmentations (NiFTI, 2.9GB)

Click the Versions tab for more info about data releases.

titleDetailed Description

Detailed Description

Collection Statistics

Updated 2017/07/31



Number of Patients


Number of Studies


Number of Series


Number of Images


Image Size (GB)2.7

Supporting Documentation and Metadata

Acquisition parameters for this Collection: Pre-operative post-biopsy MRI images of brain (DICOM format), segmentations (NIfTI format), and 1p-19q co-deletion data (text files).


titleCitations & Data Usage Policy

Citations & Data Usage Policy 

This collection is freely available to browse, download, and use for commercial, scientific and educational purposes as outlined in the Creative Commons Attribution 3.0 Unported License.  See TCIA's Data Usage Policies and Restrictions for additional details. Questions may be directed to

Please be sure to include the following citations in your work if you use this data set:

titleData Citation

Erickson, Bradley; Akkus, Zeynettin; Sedlar, Jiri; Korfiatis, Panagiotis. (2017). Data From LGG-1p19qDeletion. The Cancer Imaging Archive.

titleTCIA Citation

Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, Phillips S, Maffitt D, Pringle M, Tarbox L, Prior F. The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository, Journal of Digital Imaging, Volume 26, Number 6, December, 2013, pp 1045-1057. (paper)


Other Publications Using This Data

  1. Predicting Deletion of Chromosomal Arms 1p/19q in Low-Grade Gliomas from MR Images Using Machine Intelligence. Zeynettin Akkus, Issa Ali, Jiri Sedlar, Timothy L. Kline,  Jiří SedlářJay P. Agrawal, Ian F. Parney, Caterina Giannini,and Bradley J. Erickson. Predicting 1p19q Chromosomal Deletion of Low-Grade Gliomas from MR Images using Deep Learning. (2016). J Digit Imaging. 2017 Aug; 30(4): 469–476. Published online 2017 Jun 9.  doi:  10.1007/s10278-017-9984-3. PMCID: PMC5537096
  2. Bradley J. Erickson, Panagiotis Korfiatis, Zeynettin Akkus, Timothy Kline, Kenneth Philbrick. Toolkits and Libraries for Deep Learning. Journal of Digital Imaging 2017 p1618-1627.

TCIA maintains a list of publications which leverage our data.If you have a publication you'd like to add please contact the TCIA Helpdesk.


Version 1 (Current): Updated 2017/09/30

Data TypeDownload all or Query/Filter
Images (2.7GB)


Segmentations (NiFTi, 2.9GB)