Versions Compared


  • This line was added.
  • This line was removed.
  • Formatting was changed.


  1. Lehrer, M., Bhadra, A., Ravikumar, V., Chen, J. Y., Wintermark, M., Hwang, S. N., Holder, C. A., Huang, E. P., Fevrier-Sullivan, B., Freymann, J. B., Rao, A., & TCGA Glioma Phenotype Research Group. (2017). Multiple-response regression analysis links magnetic resonance imaging features to de-regulated protein expression and pathway activity in lower grade glioma. Oncoscience, 4, 57-66. doi:10.18632/oncoscience.353

  2. Demerath, T., Simon-Gabriel, C.P., Kellner, E., Schwarzwald, R., Lange, T., Heiland, D.H., Reinacher, P., Staszewski, O., Mast, H., Kiselev, V.G., Egger, K., Urbach, H., Weyerbrock, A., Mader, I. (2017). Mesoscopic imaging of glioblastomas: Are diffusion, perfusion and spectroscopic measures influenced by the radiogenetic phenotype? Neuroradiology Journal, 30(1); 36-47. doi: 10.1177/1971400916678225
  3. Liu, T.T., Achrol, A.S., Mitchell, L.A., Rodriguez, S.A., Feroze, A., Iv, M., Kim, C., Chaudhary, N., Gevaert, O., Stuart, J.M., Harsh, G.R., Chang, S.D., Rubin, D.L. (2016). Magnetic resonance perfusion image features uncover an angiogenic subgroup of glioblastoma patients with poor survival and better response to antiangiogenic treatment. Neuro-Oncology, 1-11. doi: 10.1093/neuonc/now270

  4. Schrock, M., Batar, B., Lee, J., Druck, T., Ferguson, B., Cho, J., Akakpo, K., Hagrass, H., Heerema, N., Xia, F. (2016). Wwox–Brca1 interaction: role in DNA repair pathway choice. Oncogene, 1-13. doi: 10.1038/onc.2016.389.

  5. Song, S.E., Bae, M.S., Chang, J.M., Cho, N., Ryu, H.S., Moon, W.K. (2016). MR and mammographic imaging features of HER2-positive breast cancers according to hormone receptor status: a retrospective comparative study. Acta Radiologica. 58(7), 792-799.  doi: 10.1177/0284185116673119

  6. McCann, S.M., Jiang, Y., Fan, X., Wang, J. Antic, T., Prior, F., VanderWeele, D., Oto, A. Quantitative Multiparametric MRI Features and PTEN Expression of Peripheral Zone Prostate Cancer: A Pilot Study. American Journal of Roentgenology 206(3); 559-565 doi: 10.2214/AJR.15.14967

  7. Katrib, A., Hsu, W., Bui, A., Xing, Y. (2016). “Radiotranscriptomics”: A synergy of imaging and transcriptomics in clinical assessment. Quantitative Biology. 1-12. doi: 10.1007/s40484-016-0061-6

  8. Bai, H.X., Lee, A.M., Yang, L., Zhang, P., Davatzikos, C., Maris, J.M., Diskin, S.J. (2016). Imaging genomics in cancer research: Limitations and promises. The British Journal of Radiology, 89(1061); doi: 10.1259/bjr.20151030
  9. Zhu, Y., H. Li, et al. (2015). TU-CD-BRB-06: Deciphering Genomic Underpinnings of Quantitative MRI-Based Radiomic Phenotypes of Invasive Breast Carcinoma. Medical physics 42(6): 3603-3603. doi: 10.1118/1.4925591

  10. Tomczak, K., Czerwińska, P., Wiznerowicz, M. (2015). The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Pozn). 19(1A); A68-A77. doi: 10.5114/wo.2014.47136

  11. Shinegare, A.B., Vikram, R., Jaffe, C., Akin, O., Kirby, J., Huang, E., Freymann, J., Sainani, N.I., Sadow, C.A., Bathala, T.K., Rubin, D.L., Oto, A., Heller, M.T., Surabhi, V.R., Katabathina, V., Silverman, S.G. (2015). Radiogenomics of clear renal cell carcinoma: Preliminary Findings of The Cancer Genome Atlas-Renal Cell Carcinoma (TCGA-RCC) Imaging Research Group. Abdominal Imaging, 40(6). 1684-1692. doi: 10.1007/s00261-015-0386-z
  12. Pope, W.B. (2015). Genomics of Brain Tumor Imaging. Neuroimaging Clinics of North America. 25(1); 105-19. doi: 10.1016/j.nic.2014.09.006

  13. Gutman, D.A., Dunn Jr., W.D., Grossmann, P., Cooper, L.A., Holder, C.A., Ligon, K.L., Alexander, B.M., Aerts, H.J. (2015). Somatic mutations associated with MRI-derived volumetric features in glioblastoma. Neuroradiology, 57(12); 1227-1237doi: 10.1007/s00234-015-1576-7
  14. Feldman, M., Piazza, M.G., Edwards, N.A., Ray, Chaudhury, A., Maric, D., Merrill, M.J., Zhuang, Z., Chittiboina, P. (2015). 137 Somatostatin Receptor Expression on VHL-Associated Hemangioblastomas Offers Novel Therapeutic Target. Neurosurgery 62. (CN_suppl_1); 209-210. doi: 10.1227/01.neu.0000467099.84064.25

  15. Colen R, Foster I, Gatenby R, Giger ME, Gillies R, Gutman D, Heller M, Jain R, Madabhushi A, Madhavan S, Napel S, Rao A, Saltz J, Tatum J, Verhaak R, Whitman G. (2014). NCI Workshop Report: Clinical and Computational Requirements for Correlating Imaging Phenotypes with Genomics Signatures. Translational Oncology. 2014; 7(5):; 556-69. doi: 10.1016/j.tranon.2014.07.007.
  16. Rao A. (2013).  Exploring relationships between multivariate radiological phenotypes and genetic features: A case-study in Glioblastoma using the Cancer Genome Atlas, Global Conference on Signal and Information Processing (GlobalSIP), 2013 IEEE.doi: 10.1109/GlobalSIP.2013.6736815
  17. Gevaert, O., Xu, J., Hoang CD, C.D., Leung AN, A.N., Xu, Y., Quon, A., Rubin DL, D.L., Napel, S., Plevritis SK. , S.K. (2012) Non-small cell lung cancer: identifying prognostic imaging biomarkers by leveraging public gene expression microarray data--methods and preliminary results. Radiology. 2012; 264(2):; 387-96. Epub 2012/06/23.  (link)doi: 10.1148/radiol.12111607


  1. Vani, N., Swomya, A., & Jayamma, N. (2017). Brain tumor classification using support vector machineInternational Research Journal of Engineering and Technology, 1724-1729. (link)

  2. Beichel, R.R., Smith, B.J., Bauer, C., Ulrich, E.J., Ahmadvand, P., Budzevich, M.M., Gillies, R.J., Goldgof, D., Grkovski, M., Hamarneh, G., Huang, Q., Kinahan, P.E., Laymon, C.M., Mountz, J.M., Muzi, J.P., Muzi, M., Nehmeh, S., Oborski, M.J., Tan, Y., Zhao, B., Sunderland, J.J., Buatti, J.M. (2017). Multi-site quality and variability analysis of 3D FDG PET segmentations based on phantom and clinical image data. Med. Phys. 44(2); 479-496. doi: 10.1002/mp.12041
  3. Vallières, M., Kay-Rivest, E., Perrin, L.J., Liem, X., Furstoss, C., Aerts, H.J.W.L., Khaouam, N., Nguyen-Tan, P.F., Want, C.-S., Sultanem, K., Seuntjens, J., Naqa, I.E. (2017). Radiomics strategies for risk assessment of tumour failure in head-and-neck cancerScientific Reports, (arXiv 1703.08516)
  4. Paredes, D., Saha, A., Mazurowski, M.A.(2017). Deep learning for segmentation of brain tumors: can we train with images from different institutions? SPIE Medical Imaging: Computer-Aided Diagnosis, doi: 10.1117/12.2255696
  5. Kumar, S., Dharun. (2017). Combination of fuzzy c-means clustering and texture pattern matrix for brain MRI segmentation. Biomedical Research, 28(5) 
  6. Nabizadeh N, Kubat M. Automatic Tumor Segmentation in Single-Spectral MRI Using A Texture-Based and Contour-Based Algorithm.doi: 10.1016/j.eswa.2017.01.036
  7. Kaur T, Saini BS, Gupta S. A joint intensity and edge magnitude-based multilevel thresholding algorithm for the automatic segmentation of pathological MR brain images. Neural Computing and Applications. 2016:1-24. doi: 10.1007/s00521-016-2751-4

  8. Song J, Liu Z, Zhong W, Huang Y, Ma Z, Dong D, Liang C, Tian J. Non-small cell lung cancer: quantitative phenotypic analysis of CT images as a potential marker of prognosis. Scientific reports. 2016;6:38282:1-9. doi: 10.1038/srep38282

  9. Crawford L, Monod A, Chen AX, Mukherjee S, Rabadán R. Topological Summaries of Tumor Images Improve Prediction of Disease Free Survival in Glioblastoma Multiforme. arXiv preprint arXiv:161106818. 2016:1-29.

  10. Korfiatis P, Kline TL, Erickson BJ. Automated Segmentation of Hyperintense Regions in FLAIR MRI Using Deep Learning. J Tomography, 2016, 2:4(334-340) DOI: 10.18383/j.tom.2016.00166
  11. Zheng C, Wang X, Feng D, editors. Topology guided demons registration with local rigidity preservation. Engineering in Medicine and Biology Society (EMBC), 2016 IEEE 38th Annual International Conference; 2016: IEEE.

  12. Kotrotsou A, Zinn PO, Colen RR. Radiomics in Brain Tumors: An Emerging Technique for Characterization of Tumor Environment. Magnetic Resonance Imaging Clinics of North America. 2016;24(4):719-29.

  13. Zhao B, Tan Y, Tsai WY, Qi J et al. Reproducibility of radiomics for deciphering tumor phenotype with imaging. Sci Rep. 2016 Mar 24;6:23428. (link)
  14. Li H, Zhu Y, Burnside ES, Huang E, et al. Quantitative MRI radiomics in the prediction of molecular classifications of breast cancer subtypes in the TCGA/TCIA data set. npj Breast Cancer (2016). (link)
  15. Grossmann P, Gutman DA, et al. Imaging-genomics reveals driving pathways of MRI derived volumetric tumor phenotype features in Glioblastoma. BMC Cancer (2016). (link)
  16. Zhu Y, Li H, Guo W, Drukker K, et al. Deciphering Genomic Underpinnings of Quantitative MRI-based Radiomic Phenotypes of Invasive Breast Carcinoma. Sci Rep (2015). (link) 
  17. Rajakumar K, Muttan S, Deepa G, Revathy S, Priya BS. Intelligent texture feature extraction and indexing for MRI image retrieval using curvelet and PCA with HTF. Advances in Natural and Applied Sciences. 2015 Jun 1;9(6 SE):506-13. (link)
  18. Parmar, C., R. T. Leijenaar, et al. (2015). "Radiomic feature clusters and Prognostic Signatures specific for Lung and Head &Neck cancer." Sci Rep 5: 11044.

  19.  Parmar, C., P. Grossmann, et al. (2015). "Machine Learning methods for Quantitative Radiomic Biomarkers." Sci Rep 5: 13087.
  20. Tanougast C, Chaddad A. High-Throughput Quantification of Phenotype Heterogeneity Using Statistical Features. Adv Bioinformatics (2015). (link)
  21. Chaddad A. Automated Feature Extraction in Brain Tumor by Magnetic Resonance Imaging Using Gaussian Mixture Models International Journal of Biomedical Imaging, 2015. (link)
  22. Dhara AK, Mukhopadhyay S, Khandelwal N. 3d texture analysis of solitary pulmonary nodules using co-occurrence matrix from volumetric lung CT images. SPIE 2013. (link)
  23. Dhara AK, Mukhopadhyay S, Alam N, Khandelwal N. Measurement of spiculation index in 3D for solitary pulmonary nodules in volumetric lung CT images. Proc. SPIE 8670, Medical Imaging 2013: Computer-Aided Diagnosis, 86700K. (link)