Hugo J. W. L. Aerts; Emmanuel Rios Velazquez; Ralph T. H. Leijenaar; Chintan Parmar; Patrick Grossmann; Sara Cavalho; Johan Bussink; René Monshouwer; Benjamin Haibe-Kains; Derek Rietveld; Frank Hoebers; Michelle M. Rietbergen; C. René Leemans; Andre Dekker; John Quackenbush; Robert J. Gillies; Philippe Lambin. (2014). Data from: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. The Cancer Imaging Archive.


In short, this publication applies a radiomic approach to computed tomography data of 1,019 patients with lung or head-and-neck cancer. Radiomics refers to the comprehensive quantification of tumour phenotypes by applying a large number of quantitative image features. In present analysis 440 features quantifying tumour image intensity, shape and texture, were extracted. We found that a large number of radiomic features have prognostic power in independent data sets, many of which were not identified as significant before. Radiogenomics analysis revealed that a prognostic radiomic signature, capturing intra-tumour heterogeneity, was associated with underlying gene-expression patterns. These data suggest that radiomics identifies a general prognostic phenotype existing in both lung and head-and-neck cancer. This may have a clinical impact as imaging is routinely used in clinical practice, providing an unprecedented opportunity to improve decision-support in cancer treatment at low cost.

More information about these data sets can be found at:

This is a companion dataset for the following paper:

Aerts, H. J. W. L., Velazquez, E. R., Leijenaar, R. T. H., Parmar, C., Grossmann, P., Cavalho, S., … Lambin, P. (2014, June 3). Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nature Communications. Nature Publishing Group.


Note: This data is restricted for commercial use.  Please contact Hugo Aerts, with any questions on usage.