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Overview

e CPTAC data download and preprocessing issues
— Quality controls
— Batch correction
— Different types of proteomics

* Integration of CPTAC proteomic data with other
omics

— ProteoMix: Example of integration with DNA
methylation

* Proposed radioproteomics maps
— Comparison with traditional radiogenomics maps.



CTPAC data download &
preprocessing issues

Technical steps




Clinical Proteomic Tumor Analysis
Consortium (CPTAC)

Objective: Understand the molecular basis of cancer that is not fully elucidated or
not possible through genomics by adding complementary functional layer of
protein biology and to accelerate the translation of molecular findings into the

clinical.

Timeline: |

2006-2011 Phase I: 2011-2016 Phase Il: 2016-Present Phase lll:
Process Development Proteogenomic Expansion & Clinical
and Reproducibility Discovery Translation
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Data Download:

* Method 1: Data portal

- Hosted by Georgetown University
- Requires IBM Aspera Launcher

e Method 2: NCI Proteomic Data
Commons (in beta)

= 2 8TB 31,172 ) 64,720,831 o, 991,578 12,704
H H H Programs E Fit i 3 dataties L Spectra © peptides YN Protens
- Similar to genomic data commons = . -
DISEASE TYPES
Breast Invasive Carcinoma 245
Chromophobe Renal Cell Carcinoma. 1 §
Clear Cell Renal Cell Carcinoma 117
Colon Adenocarcinoma. 167
Other 25
Ovarian Serous Cystadenocarcinoma 286
Papillary Renal Cell Carcinoma 2
Rectum Adenocarcinoma 30
M. . T A o, e Utcrine Corpus Endometrial | Carcinoma 104
 Method 3: Programmatically
RECENT RELEASES NEWS
- Direct access using Linux and command line

or Python executable script


https://pdc.esacinc.com/pdc/pdc
https://proteomics.cancer.gov/data-portal/about/faqs

Generated using Common Data Analysis Pipeline

(CDAP)

Dataset

BRCA — BROAD
Institute

COADREAD -
Vanderbilt Uni.

OV —Johns Hopkins
Uni.

OV — PNNL

CPTAC Data Overview
Phase 2 data

Number
Samples
105
95

115*

75%*

* 32 samples in common

Number Genes

10624

5561

8597

7480
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Ongoing phase 3

* 10 new cancer sites
— AML
— CCRCC
— Cutaneous Melanoma
— GBM
— HNSCC
— LSCC
— LUAD
— Ductal Adenocarcinoma
— Sarcomas
— UCEC



Proteomic workflow
Experimental Quantification

* Proteins extracted from tumor
T Dlgestion Chromevagraphy S o biospecimens from matched TCGA
' samples and proteins were tryptically
digested into peptides, small segments
of 7-30 amino acids

e Multi-stage high performance liquid
chromatography produced homogenous
fractions

* High resolution tandem mass
spectrometry measures individual
peptides at a time



Experimental Quantification

* Processing raw data produces a
T Diston. | chromeagraphy Sectromeny & mass ladder for each peptide or
group of few peptides
— * Each peak corresponds to a sub-
peptide
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I * These mass ladders are

Peien ndiidul compared to theoretical mass
ladders to identify peptides &

proteins using the RefSeq

database




Bioinformatics: Peptide Matching

» Before using abundance
measurements for genomic
g | analysis mass ladders must be
@ in siico digestion " linked to associated peptides and
 — genes

HSPG2 HQTHGSLLR
RPS5 TNSMMMHGR

FLNA KHNQRPTFR
EEF1A1 GNVAGDSKND

abundance
abundance

MAP4 RPAVASAR

* Mass ladders are identified using
CDC42EP5 HTLHVGR
caroH AGAHLQSGAK : the RefSeq Database

R
Match v Sequences for individual genes were
RefSeq H. Peptides from Theoretical Experimental fragmented in S|||C0 |nt0 peptldes

sapiens associated Genes Mass Ladders Mass Ladders
Genes

- Composition of peptides used to
generate theoretical mass ladders

- Mass ladders from experimental
samples were matched by searching
against theoretical mass ladders



CDAP: Common Data Analysis Pipeline

Search
Engine(s)

Ambiguous
matches
flagged?

Variable
Protein Mods
searched

Semi-tryptic
searched

Precursor
tolerance

Missed
Cleavages

False
Discovery
Rate

CDAP Broad

RefSeg-Human- Same as CDAP
v37-Trypsin fasta
(32,800 entries)

MS-GF+ (vB733) SpectrumMill 4.0
(Beta)

MetOx(+16)
Deamidation(+1)

(N)(+1)

Yes No

20 ppm 20 ppm

No limit =5

1% PSM 1% PSM

JHU

Same as CDAP

MS-GF+ (v9146)

MetOx(+16)

Yes

10 ppm

<2 post search

1 % peptide

PNNL Vanderbilt

Same as CDAP

1. Pepitome
1.0.42 (library)

_ MyriMatch
2187

3. MS-GF+
(vO176)

MetOx(+16)

Yes Yes

10 ppm (post- 20 ppm
DTARefinery)

No limit By search engine

1% Peptide 1% PSM

* CDAP is a standard for analyzing
proteomic data proposed by CPTAC

e Some historical data from previous
phases deviates from CDAP
* Individual research
institutions were free to select
different analysis methods for
guantifications based on
specific needs

 However the Common Data
Analysis Pipeline (CDAP) methods
are the standard moving forward



Bioinformatics: Gene Level Assembly

* Peptide identifications used to map
abundance values to genes; multiple
peptides per gene must be considered

Shared Peptides Unshared Peptides

* Peptides sequences which are not
unique to single gene, shared peptides,
can be excluded depending on data
analysis choices

* Remaining peptides (min 2) aggregated
at gene level using max abundance per
peptide




CDAP more info


https://pdc.esacinc.com/data-dictionary/harmonization.html
https://www.ncbi.nlm.nih.gov/pubmed/26860878

Proteomic technologies

e TwoO versions:

— Label free
— iTRAQ



iTRAQ Data Format (BRCA & OV)

* iTRAQ: Isobaric tags for relative and
TeoA-1: g2 (1240 absolute quantitation — low molecular
> Tcen:tog2 (i) weight ions are used to tag peptides
from each sample
- tighter quantification

TCGA-3: log2 (raadue)
W * 4-plex measurements are made: where

iTRAQ117
ﬁ’ 3 samples are compared against pooled
reference from 40 tumors

Pooled
TCGA-1 TCGA-2 TCGA-3  Referenc

E® 9P

abundanciI

iTRAQ-114 iTRAQ-115 iTRAQ-116 iTRAQ-117

abundance

* Protein abundance reported as relative
log2 ratio between sample versus
reference



ITRAQ Processing:
Quality Control issue

QC failed: 27 samples QC passed: 78 samples

 Mertins et al. identified compromised samples

<
with excessive low abundance proteins due to §
protein degradation
)
L
>
o
- Bimodal or skewed protein abundance distribution © QOlailed:5samples QG passed: 79 samplos
> Std Dev is a natural QC statistic g ] |
. . o [a W
 Two component Gaussian mixture model using 0
o

Std Dev per sample to identify compromised
samples

Mertins et al. Nature 2016



ITRAQ Processing: Missing Data

* iTRAQ measurement produces quality
15-K Nearest Neighbors measures to remove low confidence
measurements = missing values

| * Filtering: samples and genes with >25%

vt | ° IVY missin ta were removed from
. 3 SS gdaa ere removed fro
20 o } | analysis
AAGAB| 0.562 | ' |
* Imputation
* To impute missing values each sample is
matched to 15 patients with the most similar

protein abundances across all measured genes
(Euclidian Distance)

* Use the average abundance among neighbors to
impute missing value




ITRAQ Processing: Merging Multi-Site
Datasets

e QOvarian Cancer samples measured at
two sites Johns Hopkins University

and Pacific Northwest National Correlation Correlation
between samples between genes

Laboratory

* 32 samples measured at both sites

show high correspondence :
- median Spearman Rho of 0.70 for intra-
tumor variation
- median Spearman Rho of 0.71 for inter- Y5 oo os ' 1o o5 oo o5
tumor variation sample.rho gene.rho

* To unify datasets

- Remove duplicate samples from JHU
- Combine datasets and remove remaining bias
using ComBat batch correction.

Johnson et al. Biostatistics 2007
https://www.ncbi.nlm.nih.gov/pubmed/16632515



https://www.ncbi.nlm.nih.gov/pubmed/16632515

Label-free Data Format (COADREAD)

Gene | AA-3518
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* Unlike iTRAQ, label-free quantification only provides absolute values per
sample

* Protein abundance is quantified using the number of spectra measured,
spectral counts



Label-free Processing: Zhang et al.
Normalization

To guide analysis Zhang et al.
(COADREAD) quality control data set
and examined groups of peptides
which map to same protein and
assessed quality using intraclass
consensus (ICC)

Avg value of 1.4 across samples set as
min threshold for low abundance
peptides

Quantile normalization used to make
distribution of protein abundance in

each sample comparable

Last values are log2 transformed

Top_1000
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Zhang et al. Nature 2014



Processed Data Overview

 CDAP preprocessing & additional QC
— Mapping mass ladders to peptides
— Normalization
— QC
— Log2 transform
— Missing value estimation
— Batch correction

e Resulting data set can be processed similarly to other
genomic data using similar statistical tools

Dataset Number Samples Number Proteins
BRCA — BROAD Institute 78 8662
OV —JHU & PNNL 150 5233
COADREAD - Vanderbilt 95 2889

University



CTPAC data analysis

Linking with other omics data




CPTAC multi-omics data fusion

 Same samples also have (phase 2 & 3)
— RNA sequencing
— DNA methylation
— DNA copy number
— Etc.

 Example from our work
— Linking DNA methylation with Proteomic data

Magzoub et al. PLoS Comp Biol 2019, In Press



CPTAC data: overlapping samples &
genes/proteins

Samples with
Nr Genes | mRNA & protein
expression

BRCA 2514 78
COADREAD 2848 85
oV 1896 168

* Only focus on genes with both mRNA &
protein expression



CPTAC data

Samples with | Samples with sampole with normal
Nr Genes | mMRNA & protein | methylation P

: methylation data
expression data

BRCA 2514 78 972 123

COADREAD 2848 85 614 78

0} 1896 168 582 8

* All samples with DNA methylation data used for
methylation states

e Varying # normal samples



ProteoMix: a statistical model

For each CpG site

Raw methylation data

Identify
mixture
components

Identified methylation states

Map normal DNA
methylation
variation

Differential methylation

Incarporate
protein expression
data

Differential & Functional
methylation states

Frequency

Frequency

Low High

Methylation

=== Neutral
=== Hyper

Methylation

=== Normal variation

Frequency

»
>

Protein
expression

=== [ Oow methylation state
=== High methylation state

Methylation

Frequency

Methylation '

Magzoub et al. PLoS Comp Biol 2019, In Press



MethylMix vs.

MRNA
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Methylation

MethylMix genes

protein
expression

ProteoMix

Frequency

o

v

Methylation

ProteoMix genes

Overlap between MethylMix & ProteoMix
Gene set enrichment analysis
Overlap with cancer progression markers

Clustering



Results

BRCA COADREAD

.92..5

* Breast cancer:

— hypo-methylation in the UTR of EHF well-studied
transcription factor involved in HER2 mediated
epithelial differentiation

— knockdown of EHF has been shown to inhibit tumor
invasion and proliferation



Colorectal cancer

s Matrix - Patients DM Values - ProteoMix Genes

Tumeor Stage

= Microsatellite Instabllity ~ MLHI Sllencing Tumor Stage Tumor Size Metastatic Spread Consensus DM Value
1

Cluster MethylMix Glusters ~ Molecular Subtype ~ GIMP
1 1 M
Wz 2

Significant association with CIMP vs non-CIMP



CPTAC data

Radioproteomic maps

Ongoing work




Radiomics/Quantitative imaging
Extraction of computational features

Texture Features

*

Shape Features

ional features

| Window() |
Sandy Napel



Radiogenomics mapping

@ired data Image

features

Mapping image features
to proteins

o




Radioproteomic mapping methods

! * Integration methods

* Two-way univariate

e Univariate — multivariate
 Multivariate model of genes
 Multivariate model of image

features

 Two-way multivariate




Applications

* Predict protein expression clusters from
imaging
— Non-invasive biomarkers

* Predict imaging phenotype from protein data
— Study how pathways lead to imaging phenotypes
— Annotate protein function

 Compare with and validate in “traditiona

radiogenomics maps built on RNA expression
data

I”
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MethylMix & ProteoMix: identifying DNA
methylation-driven genes in cancer

\ ) , MethylMix & ProteoMix
Differential \ % peEmEE

Available on Bioconductor & github:

! / https://github.com/gevaertlab
\4\' Functional GenePattern module

g in development
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