Localtab |
---|
active | true |
---|
title | Data Access |
---|
| Data AccessClick the Download button to save the data.
Data Type | Download all or Query/Filter | License |
---|
Tumor Segmentations (NIfTI, ZIP, 834 KB) |
Tcia button generator |
---|
url | https://wiki.cancerimagingarchive.net/download/attachments/24284406/segmentations.zip?api=v2 |
---|
|
|
| | Image Features and Patient Survival (CSV, 107 KB) |
Tcia button generator |
---|
url | https://wiki.cancerimagingarchive.net/download/attachments/24284406/FeaturesWithLabels%20%281%29.csv?api=v2 |
---|
|
|
| |
Please contact help@cancerimagingarchive.net with any questions regarding usage.
Collections Used in this Third Party Analysis
Below is a list of the Collections used in these analyses: Data Type | Download all or Query/Filter |
---|
Original Source Images (DICOM, 1.54 GB) |
Tcia button generator |
---|
url | https://wiki.cancerimagingarchive.net/download/attachments/24284406/LongShortSurvivalAdenocarcinoma-doiJNLP-qOFdxYUi.tcia?api=v2 |
---|
|
|
(Download requires the NBIA Data Retriever) |
|
Localtab |
---|
title | Detailed Description |
---|
| Detailed DescriptionImage data is available in DICOM format. Segmentation data is available in .nii format. Labels are available in .csv format. The first column is subject identification. The second column is survival class. Subsequent columns are computed image features which are described in the following publications. |
Localtab |
---|
title | Citations & Data Usage Policy |
---|
| Citations & Data Usage Policy Tcia limited license policy |
---|
Info |
---|
| Goldgof D., Hall L., Hawkins S.H., Schabath M.B., Stringfield O., Garcia A., Balagurunathan Y., Kim J., Eschrich S., Berglund A.E., Gatenby R., Gillies R.J. (2017) Long and Short Survival in Adenocarcinoma Lung CTs. The Cancer Imaging Archive. https://doi.org/10.7937/K9/TCIA.2017.0tv7b9x1 |
Info |
---|
title | Publication Citation |
---|
| Paul, R., Hawkins, S., Balagurunathan, Y., Schabath, M., Gillies, R., Hall, L., & Goldgof, D. (2016). Deep Feature Transfer Learning in Combination with Traditional Features Predicts Survival among Patients with Lung Adenocarcinoma. Tomography, 2(4), 388–395. https://doi.org/10.18383/j.tom.2016.00211 |
Info |
---|
title | Publication Citation |
---|
| Hawkins, S. H., Korecki, J. N., Balagurunathan, Y., Yuhua Gu, Kumar, V., Basu, S., Hall, L. O., Goldgof, D. B., Gatenby, R. A., & Gillies, R. J. (2014). Predicting Outcomes of Nonsmall Cell Lung Cancer Using CT Image Features. IEEE Access, 2, 1418–1426. https://doi.org/10.1109/access.2014.2373335 |
Info |
---|
| Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, Phillips S, Maffitt D, Pringle M, Tarbox L, Prior F. The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository, Journal of Digital Imaging, Volume 26, Number 6, December, 2013, pp 1045-1057. https://doi.org/10.1007/s10278-013-9622-7 |
Other Publications Using This DataTCIA maintains a list of publications that leverage TCIA data. If you have a manuscript you'd like to add please contact the TCIA Helpdesk. |
Localtab |
---|
| Version 1 (Current): 2017/08/11 Data Type | Download all or Query/Filter |
---|
Images (DICOM) | | Tumor Segmentations (NIFTI) | | Image Features and Patient Survival (CSV) | |
|
|