Child pages
  • Lung CT Segmentation Challenge 2017

Versions Compared


  • This line was added.
  • This line was removed.
  • Formatting was changed.



This data set was provided in association with a challenge competition and related conference session conducted at the AAPM 2017 Annual Meeting. The initial winners were announced at the AAPM meeting, but the competition website remains open to others who wish to see how their algorithms perform.

Numerous auto-segmentation methods exist for Organs at Risk in radiotherapy. The overall objective of this auto-segmentation grand challenge is to provide a platform for comparison of various auto-segmentation algorithms when they are used to delineate organs at risk (OARs) from CT images for thoracic patients in radiation treatment planning. The results will provide an indication of the performances achieved by various auto-segmentation algorithms and can be used to guide the selection of these algorithms for clinic use if desirable.

Localtab Group

titleData Access

Data Access

Click the Download button to save a ".tcia" manifest file to your computer, which you must open with the NBIA Data Retriever. Click the Search button to open our Data Portal, where you can browse the data collection and/or download a subset of its contents. Additional download options relevant to the challenge can be found on and in the Detailed Description tab.

Data TypeDownload all or Query/Filter
Images and Radiation Therapy Structures (DICOM, 4.8 GB)


(Requires the NBIA Data Retriever.)

Click the Versions tab for more info about data releases.

titleDetailed Description

Detailed Description

Collection Statistics

Updated 2019/05/08



Number of PatientsParticipants


Number of Studies


Number of Series


Number of Images


Image Size (GB)4.8

Supporting Documentation and Metadata

To participate in the challenge and to learn more about the subsets of training and test data used please visit Some information from the challenge site is included below.

Data description

Average 4DCT or free-breathing (FB) CT images from 60 patients, depending on clinical practice, are used for this challenge. Data were acquired from 3 institutions (20 each). Datasets were divided into three groups, stratified per institution:

  • 36 training datasets
  • 12 off-site test datasets
  • 12 live test datasets

Data will be provided in DICOM (both CT and RTSTRUCT), as commonly used in most commercial treatment planning systems.

Contouring Guidelines The manual contours that were used in clinic for treatment planning were used as ground “truth.” All contours were reviewed (and edited if necessary) to ensure consistency across the 60 patients using the RTOG 1106 contouring atlas. Details of contouring guidelines can be found in "Learn the Details". The following organs-at-risk (OARs) are included in this challenge:

  • Esophagus
  • Heart
  • Left and Right Lungs
  • Spinal cord

Training data

Each training dataset includes a set of DICOM CT image files and one DICOM RTSTRUCT file. Each training dataset is labeled as LCTSC-Train-Sx-yyy, with Sx (x=1,2,3) identifying the institution and yyy identifying the dataset ID in one institution. You may take advantage of this information to optimize your algorithm for testing data acquired from different institutions.

Training data are available here as a ".tcia" manifest file. Save this to your computer, then open with the NBIA Data Retriever to download the files. 

Off-site test data

Each off-site test dataset includes a set of DICOM CT image files and is labeled as LCTSC-Test-Sx-10y, with Sx (x=1,2,3) identifying the institution and 10y (y=1,2,3,4) identifying the dataset ID in one institution.

Off-site test data are available here as a ".tcia" manifest file. Save this to your computer, then open with the NBIA Data Retriever to download the files. 

Live test data

Each live test dataset includes a set of DICOM CT image files and is labeled as LCTSC-Test-Sx-20y, with Sx (x=1,2,3) identifying the institution and 20y (y=1,2,3,4) identifying the dataset ID in one instution.

Live test data are available here as a ".tcia" manifest file. Save this to your computer, then open with the NBIA Data Retriever to download the files. 

Manual contours for off-site and live test data

Manual contours for both off-site and live test data are now available in DICOM RTSTRUCT. Each test dataset has one DICOM RTSTRUCT file. These manual contours serve as “ground truth” for evaluating segmentation algorithm performance.

Test data contours are available here as a ".tcia" manifest file. Save this to your computer, then open with the NBIA Data Retriever to download the files. 

Contouring Guidelines from the challenge


Standard name: Esophagus

RTOG Atlas description: The esophagus should be contoured from the beginning at the level just below the cricoid to its entrance to the stomach at GE junction. The esophagus will be contoured using mediastinal window/level on CT to correspond to the mucosal, submucosa, and all muscular layers out to the fatty adventitia.

Additional notes: The superior-most slice of the esophagus is the slice below the first slice where the lamina of the cricoid cartilage is visible (+/- 1 slice). The inferior-most slice of the esophagus is the first slice (+/- 1 slice) where the esophagus and stomach are joined, and at least 10 square cm of stomach cross section is visible.


Standard name: Heart

RTOG Atlas description: The heart will be contoured along with the pericardial sac. The superior aspect (or base) will begin at the level of the inferior aspect of the pulmonary artery passing the midline and extend inferiorly to the apex of the heart.

Additional notes: Inferior vena cava is excluded or partly excluded starting at slice where at least half of the circumference is separated from the right atrium.


Standard names: Lung_L, Lung_R

RTOG Atlas description: Both lungs should be contoured using pulmonary windows. The right and left lungs can be contoured separately, but they should be considered as one structure for lung dosimetry. All inflated and collapsed, fibrotic and emphysematic lungs should be contoured, small vessels extending beyond the hilar regions should be included; however, pre GTV, hilars and trachea/main bronchus should not be included in this structure.

Additional notes: Tumor is excluded in most data, but size and extent of excluded region are not guaranteed. Hilar airways and vessels greater than 5 mm (+/- 2 mm) diameter are excluded. Main bronchi are always excluded, secondary bronchi may be included or excluded. Small vessels near hilum are not guaranteed to be excluded. Collapsed lung may be excluded in some scans. Regions of tumor or collapsed lung that are excluded from training and test data will be masked out during evaluation, such that scores are affected by segmentation choices in those regions.

Spinal cord

Standard name: SpinalCord

RTOG Atlas description: The spinal cord will be contoured based on the bony limits of the spinal canal. The spinal cord should be contoured starting at the level just below cricoid (base of skull for apex tumors) and continuing on every CT slice to the bottom of L2. Neuroformanines should not be included.

Additional notes: Spinal cord may be contoured beyond cricoid superiorly, and beyond L2 inferiorly. Contouring to base of skull is not guaranteed for apical tumors.

titleCitations & Data Usage Policy

Citations & Data Usage Policy 

This collection is freely available to browse, download, and use for commercial, scientific and educational purposes as outlined in the Creative Commons Attribution 3.0 Unported License.  See TCIA's Data Usage Policies and Restrictions for additional details. Questions may be directed to

Please be sure to include the following citations in your work if you use this data set:

titleDataset Citation

Yang, Jinzhong; Sharp, Greg; Veeraraghavan, Harini ; van Elmpt, Wouter ; Dekker, Andre; Lustberg, Tim; Gooding, Mark. (2017). Data from Lung CT Segmentation Challenge. The Cancer Imaging Archive.

titlePublication Citation

Yang, J. , Veeraraghavan, H. , Armato, S. G., Farahani, K. , Kirby, J. S., Kalpathy‐Kramer, J. , van Elmpt, W. , Dekker, A. , Han, X. , Feng, X. , Aljabar, P. , Oliveira, B. , van der Heyden, B. , Zamdborg, L. , Lam, D. , Gooding, M. and Sharp, G. C. (2018), Autosegmentation for thoracic radiation treatment planning: A grand challenge at AAPM 2017. Med. Phys.. . doi:10.1002/mp.13141

titleTCIA Citation

Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, Phillips S, Maffitt D, Pringle M, Tarbox L, Prior F. The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository, Journal of Digital Imaging, Volume 26, Number 6, December, 2013, pp 1045-1057. (paper)

Other Publications Using This Data

TCIA maintains a list of publications that leverage our data. At this time we are not aware of any publications based on this data. If you have a publication you'd like to add, please contact the TCIA Helpdesk.


Version 3 (Current): Updated 2020/02/25

Data TypeDownload all or Query/Filter
Images (4.80 GB)

(Requires the NBIA Data Retriever.)

Change note: One subject's RTSTRUCT had a mis-named structure.  It was "Lung L", "Lung R" instead of "Lung_L", "Lung_R" and has been corrected.

Version 2 : Updated 2019/05/08

Data TypeDownload all or Query/Filter
Images (4.80 GB)

(Requires the NBIA Data Retriever.)

Added RTSTRUCT files.

Version 1: Updated 2017/05/17

Data TypeDownload all or Query/Filter
Images (4.76 GB)


(Requires the NBIA Data Retriever.)