Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Collection:  CT Colonography

  1. Yahya-Zoubir B, Hamami L. et al. Automatic 3D Mesh-Based Centerline Extraction from a Tubular Geometry Form. Information Technology and Control, 2016. 45(2):156-163. (link)
  2. Alazmani A, Hood A, et al. Quantitative Assessment of Colorectal Morphology: Implications for Robotic Colonoscopy. Medical Engineering and Physics, 2016. 38(2):148-154. (link)
  3. Gayathri Devi K, Radhakrishnan R. Automatic Segmentation of Colon in 3D CT Images and Removal of Opacified Fluid Using Cascade Feed Forward Neural Network. Computational and Mathematical Methods in Medicine. 2015;2015.
  4. Namías R, et al., Automatic rectum limit detection by anatomical markers correlation. Computerized Medical Imaging and Graphics, 2014. 38(4):245-250.(link)
  5. Boone DJ, Halligan S, Roth HR, et al., CT Colonography: External Clinical Validation of an Algorithm for Computer-assisted Prone and Supine Registration. Radiology, 2013. 268(3):752-760.(link)
  6. Roth HR, et al., External clinical validation of prone and supine CT colonography registration in Abdominal Imaging. Computational and Clinical Applications 2012, Springer. 7601:10-19.(link)
  7. C.D. Johnson, MD, MMM,M-H. Chen, PhD, A.Y. Toledano, ScD, J.P. Heiken, MD, A. Dachman, MD, M.D. Kuo, MD, C. Menias, MD, B. Siewert, MD, J.I. Cheema, MD, R.G. Obregon, MD, J.L. Fidler, MD, P. Zimmerman, MD, K.M. Horton, MD, K. Coakley, MD, R.B. Iyer, MD, A.K. Hara, MD, R.A. Halvorsen, Jr., MD, G. Casola, MD, J. Yee, MD, B. A. Herman, SM, L.J. Burgart, MD, and P.J. Limburg, MD, MPH. Accuracy of CT Colonography for Detection of Large Adenomas and Cancers. N Engl J Med. 2008 Sep 18; 359(12): 1207–1217. doi:  10.1056/NEJMoa0800996. (paper)

Collection:  LIDC-IDRI

  1. Wang W, Luo J, Yang X, Lin H. Data Analysis of the Lung Imaging Database Consortium and Image Database Resource Initiative. Academic Radiology. 2015.
  2. Shen S, Bui AA, Cong J, Hsu W. An automated lung segmentation approach using bidirectional chain codes to improve nodule detection accuracy. Computers in biology and medicine. 2015;57:139-49.
  3. Messay T, Hardie RC, Tuinstra TR. Segmentation of Pulmonary Nodules in Computed Tomography Using a Regression Neural Network Approach and its Application to the Lung Image Database Consortium and Image Database Resource Initiative Dataset. Medical Image Analysis. 2015.(paper)
  4.  

  5. Sivakumar, S. and C. Chandrasekar (2015). "A Novel Noise Removal Method for Lung CT SCAN Images Using Statistical Filtering Techniques." International Journal of Algorithms Design and Analysis 1(1).

  6. Magdy, E., N. Zayed, et al. Automatic Classification of Normal and Cancer Lung CT Images using Multi-scale AM-FM Features. Intl Journal of Biomedical Imaging, 2015. (link)

  7. Kumar, D., M. J. Shafiee, et al. Discovery Radiomics for Computed Tomography Cancer Detection. arXiv e-print, 2015. (arXiv link)

  8. Demir, Ö. and A. Yılmaz Çamurcu (2015). "Computer-aided detection of lung nodules using outer surface features." Bio-Medical Materials and Engineering 26(s1): 1213-1222.

  9. Kumar, A., F. Nette, et al. (2014). "A Visual Analytics Approach using the Exploration of Multi-Dimensional Feature Spaces for Content-based Medical Image Retrieval  IEEE J Biomed Health Inform (2014) 19(5):1734:1746 (pubmed link)

  10. Sivakumar S and Chandrasekar C, Lung nodule detection using fuzzy clustering and support vector machines. International Journal of Engineering and Technology, 2013. 5(1):179-185.(link)
  11. Gavrielides MA, Zeng R, Myers KJ, Sahiner B, Petrick N. Benefit of overlapping reconstruction for improving the quantitative assessment of CT lung nodule volume. Academic Radiology, 2013. 20(2):173-180. doi: 10.1016/j.acra.2012.08.014. (link)
  12. Aggarwal P, Vig R, and Sardana H Patient-Wise Versus Nodule-Wise Classification of Annotated Pulmonary Nodules using Pathologically Confirmed Cases. Journal of Computers, 2013. 8(9):2245-2255. (link)
  13. Sivakumar S and Chandrasekar C, Lung nodule detection using fuzzy clustering and support vector machines. International Journal of Engineering and Technology, 2013. 5(1):179-185.Lungs image segmentation through weighted FCM.Recent Advances in Computing and Software Systems (RACSS), 2012 International Conference. 25-27 April 2012 pages 109-113. IEEE. doi:10.1109/RACSS.2012.6212707 (link)
  14. Armato S, et al., Collaborative projects. Int J CARS, 2012. 7(1):S111-S115.
  15. Sivakumar Diciotti S and Chandrasekar C, Lungs image segmentation through weighted FCM.Recent Advances in Computing and Software Systems (RACSS), 2012 International Conference. 25-27 April 2012 pages 109-113. IEEE. , Lombardo S, Falchini M, Picozzi G, Mascalchi M. Automated segmentation refinement of small lung nodules in CT scans by local shape analysis. Biomedical Engineering, IEEE Transactions. 2011. 58(12):3418-3428. doi: 10.1109/RACSSTBME.20122011.6212707 2167621. (link)
  16. Armato III SG, McLennan G, Bidaut L, McNitt-Gray MF, Meyer CR, Reeves AP, Zhao B, Aberle DR, Henschke CI, Hoffman EA, Kazerooni EA, MacMahon H, van Beek EJR, Yankelevitz D, et al.:The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A completed reference database of lung nodules on CT scans.Medical Physics, 38: 915–931, 2011. (link)

    Diciotti S, Lombardo S, Falchini M, Picozzi G, Mascalchi M.



     

    Automated segmentation refinement of small lung nodules in CT scans by local shape analysis. Biomedical Engineering, IEEE Transactions. 2011. 58(12):3418-3428. doi: 10.1109/TBME.2011.2167621. (link)

  17. Kumar, D., M. J. Shafiee, et al. (2015). "Discovery Radiomics for Computed Tomography Cancer Detection." arXiv preprint arXiv:1509.00117.

  18. Sivakumar, S. and C. Chandrasekar (2015). "A Novel Noise Removal Method for Lung CT SCAN Images Using Statistical Filtering Techniques." International Journal of Algorithms Design and Analysis 1(1).

  19. Magdy, E., N. Zayed, et al. "Automatic Classification of Normal and Cancer Lung CT Images using Multi-scale AM-FM."Demir, Ö. and A. Yılmaz Çamurcu (2015). "Computer-aided detection of lung nodules using outer surface features." Bio-Medical Materials and Engineering 26(s1): 1213-1222.

  20. Kumar, A., F. Nette, et al. (2014). "A Visual Analytics Approach using the Exploration of Multi-Dimensional Feature Spaces for Content-based Medical Image Retrieval."

  21. Armato SG III, McLennan G, McNitt-Gray MF, Meyer CR, Yankelevitz D, Aberle DR, Henschke CI, Hoffman EA, Kazerooni EA, MacMahon H, Reeves AP, Croft BY, Clarke LP, The Lung Image Database Consortium Research Group: Lung Image Database Consortium: Developing a resource for the medical imaging research community. Radiology 232: 739–748, 2004.

  22. Meyer CR, Johnson TD, McLennan G, Aberle DR, Kazerooni EA, MacMahon H, Mullan BF, Yankelevitz DF, van Beek EJR, Armato SG III, McNitt-Gray MF, Reeves AP, Gur D, Henschke CI, Hoffman EA, Bland PH, Laderach G, Pais R, Qing D, Piker C, Guo J, Starkey A, Max D, Croft BY, Clarke LP: Evaluation of lung MDCT nodule annotation across radiologists and methods. Academic Radiology 13: 1254–1265, 2006.
  23. Armato SG III, McNitt-Gray MF, Reeves AP, Meyer CR, McLennan G, Aberle DR, Kazerooni EA, MacMahon H, van Beek EJR, Yankelevitz D, Hoffman EA, Henschke CI, Roberts RY, Brown MS, Engelmann RM, Pais RC, Piker CW, Qing D, Kocherginsky M, Croft BY, Clarke LP: The Lung Image Database Consortium (LIDC): An evaluation of radiologist variability in the identification of lung nodules on CT scans. Academic Radiology 14: 1409–1421, 2007.
  24. Armato SG III, Roberts RY, McNitt-Gray MF, Meyer CR, Reeves AP, McLennan G, Engelmann RM, Bland PH, Aberle DR, Kazerooni EA, MacMahon H, van Beek EJR, Yankelevitz D, Croft BY, Clarke LP: The Lung Image Database Consortium (LIDC): Ensuring the integrity of expert-defined “truth.” Academic Radiology 14: 1455–1463, 2007.
  25. McNitt-Gray MF, Armato SG III, Meyer CR, Reeves AP, McLennan G, Pais R, Freymann J, Brown MS, Engelmann RM, Bland PH, Laderach GE, Piker C, Guo J, Towfic Z, Qing DP, Yankelevitz DF, Aberle DR, van Beek EJR, MacMahon H, Kazerooni EA, Croft BY, Clarke LP: The Lung Image Database Consortium (LIDC) data collection process for nodule detection and annotation. Academic Radiology 14: 1464–1474, 2007.
  26. Reeves AP, Biancardi AM, Apanasovich TV, Meyer CR, MacMahon H, van Beek EJR, Kazerooni EA, Yankelevitz DF, McNitt-Gray MF, McLennan G, Armato SG III, Henschke CI, Aberle DR, Croft BY, Clarke LP: The Lung Image Database Consortium (LIDC): A comparison of different size metrics for pulmonary nodule measurements. Academic Radiology 14: 1475–1485, 2007.
  27. Armato SG III, Roberts RY, Kocherginsky M, Aberle DR, Kazerooni EA, MacMahon H, van Beek EJR, Yankelevitz DF, McLennan G, McNitt-Gray MF, Meyer CR, Reeves AP, Caligiuri P, Quint LE, Sundaram B, Croft BY, Clarke LP: Assessment of radiologist performance in the detection of lung nodules: Dependence on the definition of “truth”. Academic Radiology 16: 28–38, 2009.
  28. Raicu DS, Varutbangkul E, Furst JD, Armato SG III: Modeling semantics from image data: Opportunities from LIDC. International Journal of Biomedical Engineering and Technology 3: 83–113, 2010.
  29. Zinovev D, Duo Y, Raicu DS, Furst JD, Armato SG III: Consensus versus disagreement in imaging research: A case study using the LIDC Database. Journal of Digital Imaging 25: 423–436, 2012.

...