Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

  1. Firmino M, Angelo G, et al. Computer-aided Detection (CADe) and Diagnosis (CADx) System for Lung Cancer with Likelihood of Malignancy Biomed Eng Online (2016) 15(1):2 (link)
  2. Deep G, Kaur L, et al. Directional Local Ternary Quantized Extrema Pattern: A new descriptor for Biomedical Image Indexing and Retrieval Eng Sci and Tech, an International Journal (2016) (link)
  3. Wang W, Luo J, Yang X, Lin H. Data Analysis of the Lung Imaging Database Consortium and Image Database Resource Initiative. Academic Radiology. 2015.
  4. Sivakumar, S. and C. Chandrasekar (2015). "A Novel Noise Removal Method for Lung CT SCAN Images Using Statistical Filtering Techniques." International Journal of Algorithms Design and Analysis 1(1).

  5. Shen S, Bui AA, Cong J, Hsu W. An automated lung segmentation approach using bidirectional chain codes to improve nodule detection accuracy. Computers in biology and medicine. 2015;57:139-49.
  6. Messay T, Hardie RC, Tuinstra TR. Segmentation of Pulmonary Nodules in Computed Tomography Using a Regression Neural Network Approach and its Application to the Lung Image Database Consortium and Image Database Resource Initiative Dataset. Medical Image Analysis. 2015.(paper)
  7. Magdy, E., N. Zayed, et al. Automatic Classification of Normal and Cancer Lung CT Images using Multi-scale AM-FM Features. Intl Journal of Biomedical Imaging, 2015. (link)

  8. Lassen BC, Jacobs C, et al. Robust Semi-automatic Segmentation of Pulmonary Subsolid Nodules in Chest Computed Tomography Scans. Phys Med Biol (2015) 60(3):1307-1323. (link)

  9. Kumar, D., M. J. Shafiee, et al. Discovery Radiomics for Computed Tomography Cancer Detection. arXiv e-print, 2015. (arXiv link)

  10. Demir, Ö. and A. Yılmaz Çamurcu (2015). "Computer-aided detection of lung nodules using outer surface features." Bio-Medical Materials and Engineering 26(s1): 1213-1222.

  11. Kumar, A., F. Nette, et al. (2014). "A Visual Analytics Approach using the Exploration of Multi-Dimensional Feature Spaces for Content-based Medical Image Retrieval  IEEE J Biomed Health Inform (2014) 19(5):1734:1746 (pubmed link)

  12. Sivakumar S and Chandrasekar C, Lung nodule detection using fuzzy clustering and support vector machines. International Journal of Engineering and Technology, 2013. 5(1):179-185.(link)
  13. Gavrielides MA, Zeng R, Myers KJ, Sahiner B, Petrick N. Benefit of overlapping reconstruction for improving the quantitative assessment of CT lung nodule volume. Academic Radiology, 2013. 20(2):173-180. doi: 10.1016/j.acra.2012.08.014. (link)
  14. Aggarwal P, Vig R, and Sardana H Patient-Wise Versus Nodule-Wise Classification of Annotated Pulmonary Nodules using Pathologically Confirmed Cases. Journal of Computers, 2013. 8(9):2245-2255. (link)
  15. Sivakumar S and Chandrasekar C, Lungs image segmentation through weighted FCM.Recent Advances in Computing and Software Systems (RACSS), 2012 International Conference. 25-27 April 2012 pages 109-113. IEEE. doi:10.1109/RACSS.2012.6212707 (link)
  16. Armato S, et al., Collaborative projects. Int J CARS, 2012. 7(1):S111-S115.
  17. Diciotti S, Lombardo S, Falchini M, Picozzi G, Mascalchi M. Automated segmentation refinement of small lung nodules in CT scans by local shape analysis. Biomedical Engineering, IEEE Transactions. 2011. 58(12):3418-3428. doi: 10.1109/TBME.2011.2167621. (link)
  18. Raicu DS, Varutbangkul E, Furst JD, Armato SG III: Modeling semantics from image data: Opportunities from LIDC. International Journal of Biomedical Engineering and Technology 3: 83–113, 2010.

  19. Zinovev D, Duo Y, Raicu DS, Furst JD, Armato SG III: Consensus versus disagreement in imaging research: A case study using the LIDC Database. Journal of Digital Imaging 25: 423–436, 2012.

 

Info
iconfalse
titleThe following source material predate TCIA but refer to the LIDC Collection data
  1. Armato III SG, McLennan G, Bidaut L, McNitt-Gray MF, Meyer CR, Reeves AP, Zhao B, Aberle DR, Henschke CI, Hoffman EA, Kazerooni EA, MacMahon H, van Beek EJR, Yankelevitz D, et al.:The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A completed reference database of lung nodules on CT scans.Medical Physics, 38: 915–931, 2011. (link)
  2. Armato SG III, McLennan G, McNitt-Gray MF, Meyer CR, Yankelevitz D, Aberle DR, Henschke CI, Hoffman EA, Kazerooni EA, MacMahon H, Reeves AP, Croft BY, Clarke LP, The Lung Image Database Consortium Research Group: Lung Image Database Consortium: Developing a resource for the medical imaging research community. Radiology 232: 739–748, 2004.
  3. Meyer CR, Johnson TD, McLennan G, Aberle DR, Kazerooni EA, MacMahon H, Mullan BF, Yankelevitz DF, van Beek EJR, Armato SG III, McNitt-Gray MF, Reeves AP, Gur D, Henschke CI, Hoffman EA, Bland PH, Laderach G, Pais R, Qing D, Piker C, Guo J, Starkey A, Max D, Croft BY, Clarke LP: Evaluation of lung MDCT nodule annotation across radiologists and methods. Academic Radiology 13: 1254–1265, 2006.
  4. Armato SG III, McNitt-Gray MF, Reeves AP, Meyer CR, McLennan G, Aberle DR, Kazerooni EA, MacMahon H, van Beek EJR, Yankelevitz D, Hoffman EA, Henschke CI, Roberts RY, Brown MS, Engelmann RM, Pais RC, Piker CW, Qing D, Kocherginsky M, Croft BY, Clarke LP: The Lung Image Database Consortium (LIDC): An evaluation of radiologist variability in the identification of lung nodules on CT scans. Academic Radiology 14: 1409–1421, 2007.
  5. Armato SG III, Roberts RY, McNitt-Gray MF, Meyer CR, Reeves AP, McLennan G, Engelmann RM, Bland PH, Aberle DR, Kazerooni EA, MacMahon H, van Beek EJR, Yankelevitz D, Croft BY, Clarke LP: The Lung Image Database Consortium (LIDC): Ensuring the integrity of expert-defined “truth.” Academic Radiology 14: 1455–1463, 2007.
  6. McNitt-Gray MF, Armato SG III, Meyer CR, Reeves AP, McLennan G, Pais R, Freymann J, Brown MS, Engelmann RM, Bland PH, Laderach GE, Piker C, Guo J, Towfic Z, Qing DP, Yankelevitz DF, Aberle DR, van Beek EJR, MacMahon H, Kazerooni EA, Croft BY, Clarke LP: The Lung Image Database Consortium (LIDC) data collection process for nodule detection and annotation. Academic Radiology 14: 1464–1474, 2007.
  7. Reeves AP, Biancardi AM, Apanasovich TV, Meyer CR, MacMahon H, van Beek EJR, Kazerooni EA, Yankelevitz DF, McNitt-Gray MF, McLennan G, Armato SG III, Henschke CI, Aberle DR, Croft BY, Clarke LP: The Lung Image Database Consortium (LIDC): A comparison of different size metrics for pulmonary nodule measurements. Academic Radiology 14: 1475–1485, 2007.
  8. Armato SG III, Roberts RY, Kocherginsky M, Aberle DR, Kazerooni EA, MacMahon H, van Beek EJR, Yankelevitz DF, McLennan G, McNitt-Gray MF, Meyer CR, Reeves AP, Caligiuri P, Quint LE, Sundaram B, Croft BY, Clarke LP: Assessment of radiologist performance in the detection of lung nodules: Dependence on the definition of “truth”. Academic Radiology 16: 28–38, 2009.

...

 

Collection:  NLST

Please see List of NLST Publications at NIH to browse publications from this Data Collection.

...

  1. Li X, Abramson RG, Arlinghaus LR, Kang H, Chakravarthy AB, Abramson VG, Farley J, Mayer IA, Kelley MC, Meszoely IM, Means-Powell J, Grau AM, Sanders M, Yankeelov TE. Multiparametric magnetic resonance imaging for predicting pathological response after the first cycle of neoadjuvant chemotherapy in breast cancer. Investigative Radiology, 2015 Apr;50(4):195-204. PMCID: PMC4471951 doi: 10.1097/RLI.0000000000000100.
  2. Weis JA, Miga MI, Arlinghaus LR, Li X, Abramson V, Chakravarthy AB, Pendyala P, Yankeelov TE. Predicting the Response of Breast Cancer to Neoadjuvant Therapy Using a Mechanically Coupled Reaction-Diffusion Model. Cancer Res. 2015 Nov 15;75(22):4697-707. doi: 10.1158/0008-5472.CAN-14-2945.

  3. Li X, Dawant BM, Welch EB, Chakravarthy AB, Freehardt D, Mayer I, Kelley M, Meszoely I, Gore JC, Yankeelov TE. Validation of an algorithm for the nonrigid registration of longitudinal breast MR images using realistic phantoms. Medical Physics, 2010; 37:2541-52. PMCID: PMC2881925
  4. Atuegwa NC, Gore JC, Yankeelov TE. Using Quantitative Imaging Data to Drive Mathematical Models of Tumor Growth and Treatment Response. Physics in Medicine and Biology, 2010; 55:2429-49. PMCID: PMC2897238
  5. Yankeelov TE, Arlinghaus L, Li X, Gore JC. The role of magnetic resonance imaging biomarkers in clinical trials of treatment response in cancer. Seminars in Oncology, 2011; 38:16-25. PMCID: PMC3073543
  6. Arlinghaus L, Li X, Levy M, Smith D, Welch WB, Gore JC, Yankeelov TE. Current and Future Trends in Magnetic Resonance Imaging Assessments of the Response of Breast Tumors to Neoadjuvant Chemotherapy. Journal of Oncology, 2010. pii: 919620. Epub 2010 Sep 29. PMCID: PMC2952974
  7. Arlinghaus LR, Welch EB, Chakravarthy AB, Farley JS, Gore JC, Yankeelov TE. Motion and distortion correction in diffusion-weighted MRI of the breast at 3T. Journal of Magnetic Resonance Imaging, 2011; 33:1063-70. PMCID: PMC3081111
  8. Gore JC, Manning HC, Quarles CC, Waddell KW, Yankeelov TE. Magnetic Resonance in the Era of Molecular Imaging of Cancer. Magnetic Resonance Imaging, 2011; 29:587-600. PMCID: PMC3285504
  9. Arlinghaus LR, Li X, Rahman AR, Welch EB, Xu L, Gore JC, Yankeelov TE. On the Relationship Between the Apparent Diffusion Coefficient and Extravascular Extracellular Volume Fraction in Human Breast Cancer. Magnetic Resonance Imaging, 2011; 29:630-8. PMCID: PMC3100356
  10. Smith DS, Welch EB, Li X, Arlinghaus LD, Loveless ME, Koyama T, Gore JC, Yankeelov TE. Quantitative effects of accelerated dynamic contrast enhanced MRI data using compressed sensing. Physics in Medicine and Biology, 2011; 56:4933-46. PMCID: PMC3192434
  11. Li, X, Welch EB, Chakravarthy B, Mayer I, Meszeoly I, Kelley M, Means-Powell J, Gore JC, Yankeelov TE. A novel AIF tracking method and comparison of DCE-MRI parameters using individual and population-based AIFs in human breast cancer. Physics in Medicine and Biology, 2011; 56:5753-69. PMCID: PMC3176673
  12. Atuegwu NC, Arlinghaus L, Li X, Welch EB, Chakravarthy AB, Gore JC, Yankeelov TE. Integration of diffusion weighted MRI data and a simple mathematical model to predict breast tumor cellularity during neoadjuvant chemotherapy. Magnetic Resonance in Medicine 2011; 66:1689-96. PMCID: PMC3218213
  13. Li, X, Welch EB, Chakravarthy B, Mayer I, Meszeoly I, Kelley M, Means-Powell J, Gore JC, Yankeelov TE. Statistical comparison of dynamic contrast-enhanced MRI pharmacokinetic models in human breast cancer. Magnetic Resonance in Medicine, 2012; 68:261-71. PMCID: PMC3291742
  14. Smith DS, Gambrell JV, Li X, Arlinghaus LA, Quarles CC, Yankeelov TE, Welch EB. Robustness of Quantitative Compressive Sensing MRI: The Effect of Random Acquisitions on Derived Parameters for DCE and DSC-MRI. IEEE Transactions in Medical Imaging, 2012; 31:504-11. PMCID: PMC3289060
  15. Smith DS, Gore JC, Yankeelov TE, Welch EB. Real-time Compressive Sensing MRI Reconstruction using GPU Computing and Split Bregman Methods. International Journal of Biomedical Imaging, 2012; 2012:864827. PMCID: PMC3296267
  16. Dula AN, Arlinghaus LR, Dortch RD, Dewey BE, Whisenant JE, Ayers GD, Yankeelov TE, Smith SE. Amide Proton Transfer Imaging of the Breast at 3 T: Establishing reproducibility and possible feasibility for assessing chemotherapy response. Magnetic Resonance in Medicine, 2013; 70: 216-24. PMCID: PMC3505231
  17. Yankeelov TE, Peterson TE, Abramson RG, Garcia-Izquierdo D, Arlinghaus LR, Li X, Atuegwu NC, Catana C, Manning HC, Fayad ZA, Gore JC. Simultaneous PET-MRI in Oncology: A Solution Looking for a Problem? Magnetic Resonance Imaging, 2012; 30:1342-56. Selected as a Top 25 paper in Magnetic Resonance Imaging, 2012. PMCID: PMC3466373
  18. Abramson RG, Arlinghaus LR, Weis JA, Li X, Dula AN, Chekmenev EY, Smith SA, Miga MI, Abramson VG, Yankeelov TE. Current and emerging quantitative magnetic resonance imaging methods for assessing and predicting the response of breast cancer to neoadjuvant therapy. Breast Cancer: Targets and Therapies, 2012; 4: 139-154. PMCID: PMC3496377
  19. Li X, Abramson RG, Arlinghaus LR, Chakravarthy AB, Abramson V, Mayer I, Farley J, Delbeke D, Yankeelov TE. An Algorithm for Longitudinal Registration of PET/CT Images Acquired During Neoadjuvant Chemotherapy in Breast Cancer: Preliminary Results. European Journal of Nuclear Medicine and Molecular Imaging Research, 2012; 16:62. PMCID: PMC3520720
  20. Fluckiger U, Loveless ME, Barnes SL, Lepage M, Yankeelov TE. A diffusion-compensated model for the analysis of DCE-MRI data: theory, simulations, and experimental results. Physics in Medicine and Biology, 2013; 58:1983-98. PMCID: PMC3646091
  21. Yankeelov TE. Integrating Imaging Data into Predictive Biomathematical and Biophysical Models of Cancer. ISRN Biomathematics, 2012; Article ID 287394. PMCID: PMC3729405
  22. Atuegwu NC, Arlinghaus LR, Li X, Chakravarthy AB, Abramson VG, Sanders ME, Yankeelov TE. Parameterizing the Logistic Model of Tumor Growth by DW-MRI and DCE-MRI Data to Predict Treatment Response and Changes in Breast Cancer Cellularity During Neoadjuvant Chemotherapy. Translational Oncology, 2013; 6:253-64. PMCID: PMC3660793
  23. Klomp DWJ, Dula AN, Arlinghaus LR, Italiaander M, Dortch RD, Zu Z, Williams JM, Gochberg DF, Luijten PR, Gore JC, Yankeelov TE, Smith SA. Amide Proton Transfer Imaging of the Human Breast at 7 Tesla: Development and Reproducibility. NMR in Biomedicine, 2013; 26:1271-7. PMCID: PMC3726578
  24. Mani S, Chen Y, Li X, Arlinghaus L, Chakravarthy AB, Abramson V, Bhave SR, Levy MA, Xu H, Yankeelov TE. Machine Learning for Predicting the Response of Breast Cancer to Neoadjuvant Chemotherapy. Journal of the American Medical Informatics Association, 2013; 20:688-95. PMCID: PMC3721158
  25. Li X, Arlinghaus LR, Ayers GD, Chakravarthy AB, Abramson RG, Abramson VG, Atuegwu N, Farley J, Mayer IA, Kelley MC, Meszoely IM, Means-Powell J, Grau AM, Sanders M, Bhave SR, Yankeelov TE. DCE-MRI Analysis Methods for Predicting the Response of Breast Cancer to Neoadjuvant Chemotherapy: Pilot Study Findings. Magnetic Resonance in Medicine, 2014; 71(4):1592-602. PMCID: PMC3742614
  26. Yankeelov TE, Atuegwu N, Hormuth D, Weis JA, Barnes SL, Miga MI, Rericha EC, Quaranta V. Clinically relevant modeling of tumor growth and treatment response. Science Translational Medicine 2013; 5:187ps9. PMCID: PMC3938952
  27. Abramson RG, Hoyt TL, Wilson KJ, Li X, Arlinghaus LR, Su P-F, Abramson VG, Chakravarthy AB, Yankeelov TE. Early Assessment of Breast Cancer Response to Neoadjuvant Chemotherapy by Semi- Quantitative Analysis of High Temporal Resolution DCE-MRI: Preliminary Results. Magnetic Resonance Imaging, 2013 ; 31:1457-64. PMCID: PMC3807825
  28. Weis JA, Miga MI, Arlinghaus LA, Li X, Chakravarthy AB, Abramson VG, Farley J, Yankeelov TE. A mechanically coupled reaction-diffusion model for predicting the response of breast tumors to neoadjuvant chemotherapy. Physics of Medicine and Biology, 2013; 58:5851-66. PMCID: PMC3791925
  29. Smith DA, Yankeelov TE, Welch EB. Potential of Compressed Sensing in Quantitative MR Imaging of Cancer. Cancer Imaging, 2013; 13:633-44. PMCID: PMC3893904
  30. Fluckiger JU, Li X, Whisenant JG, Peterson TE, Gore JC, Yankeelov TE. Using dynamic contrast enhanced magnetic resonance imaging data to constrain a positron emission tomography kinetic model: theory and simulations. International Journal of Biomedical Imaging, 2013; 2013:576470. PMCID: PMC3814089
  31. Fedorov A, Fluckiger J, Ayers GD, Li X, Gupta SN, Mulkern R, Yankeelov TE, Fennessy FM. A Comparison of Two Methods for Estimating DCE-MRI Parameters via Individual and Cohort Based AIFs in Prostate Cancer: A Step Towards Practical Implementation. Magnetic Resonance Imaging, 2014; 32:321-9. PMCID: PMC3965600
  32. Li X, Kang H, Arlinghaus LR, Abramson RG, Chakravarthy AB, Abramson VG, Farley J, Sanders M, Yankeelov TE. Analyzing Spatial Heterogeneity in DCE- and DW-MRI Parametric Maps to Optimize Prediction of Pathologic Response to Neoadjuvant Chemotherapy in Breast Cancer. Translational Oncology, 2014; 7:14-22. PMCID: PMC3998687
  33. Chenevert TL, Malyarenko DI, Newitt D, Hylton N, Huang W, Li X, Tudorica A, Fedorov A, Fennessy F, Kikinis R, Arlinghaus L, Li X, Yankeelov TE, Muzi M, Marro KI, Kinahan PE, Jajamovich GH, Dyvorne HA, Taouli B, Kalpathy-Cramer J, Oborski MJ, Laymon CM, Mountz JM, Ross BD. Error in Quantitative Image Analysis Due to Platform-Dependent Image Scaling. Translational Oncology, 2014; 7:65-71. PMCID: PMC3998685
  34. Huang W, Li X, Chen Y, Li X, Chang M-C, Oborski MJ, Malyarenko DI, Muzi M, Jajamovich GH, Federov A, Tudorica A, Gupta S, Laymon CM, Marro KI, Dyvorne HA, Miller JV, Chenevert TL, Yankeelov TE, Mountz JM, Kinahan PE, Kikinis R, Taouli B, Fennessy F, Kalpathy-Cramer J. Variations of Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Evaluation of Breast Cancer Therapy Response: A Multicenter Data Analysis Challenge. Translational Oncology, 2014; 7:153-66. PMCID: PMC3998693
  35. Atuegwu NC, Li X, Arlinghaus LR, Abramson RG, Williams JM, Chakravarthy AB, Abramson V, Yankeelov TE. Longitudinal, Inter-modality Registration of Quantitative Breast PET and MRI Data Acquired Before and During Neoadjuvant Chemotherapy: Preliminary Results. Medical Physics, 2014; 41:052302. PMCID: PMC4000383
Info
titleThe following source material predate TCIA but refer to the QIN-Breast Collection data
  1. Li X, Dawant BM, Welch EB, Chakravarthy AB, Freehardt D, Mayer I, Kelley M, Meszoely I, Gore JC, Yankeelov TE. Validation of an algorithm for the nonrigid registration of longitudinal breast MR images using realistic phantoms. Medical Physics, 2010; 37:2541-52. PMCID: PMC2881925
  2. Atuegwa NC, Gore JC, Yankeelov TE. Using Quantitative Imaging Data to Drive Mathematical Models of Tumor Growth and Treatment Response. Physics in Medicine and Biology, 2010; 55:2429-49. PMCID: PMC2897238
  3. Yankeelov TE, Arlinghaus L, Li X, Gore JC. The role of magnetic resonance imaging biomarkers in clinical trials of treatment response in cancer. Seminars in Oncology, 2011; 38:16-25. PMCID: PMC3073543
  4. Arlinghaus L, Li X, Levy M, Smith D, Welch WB, Gore JC, Yankeelov TE. Current and Future Trends in Magnetic Resonance Imaging Assessments of the Response of Breast Tumors to Neoadjuvant Chemotherapy. Journal of Oncology, 2010. pii: 919620. Epub 2010 Sep 29. PMCID: PMC2952974
  5. Arlinghaus LR, Welch EB, Chakravarthy AB, Farley JS, Gore JC, Yankeelov TE. Motion and distortion correction in diffusion-weighted MRI of the breast at 3T. Journal of Magnetic Resonance Imaging, 2011; 33:1063-70. PMCID: PMC3081111
  6. Gore JC, Manning HC, Quarles CC, Waddell KW, Yankeelov TE. Magnetic Resonance in the Era of Molecular Imaging of Cancer. Magnetic Resonance Imaging, 2011; 29:587-600. PMCID: PMC3285504
  7. Arlinghaus LR, Li X, Rahman AR, Welch EB, Xu L, Gore JC, Yankeelov TE. On the Relationship Between the Apparent Diffusion Coefficient and Extravascular Extracellular Volume Fraction in Human Breast Cancer. Magnetic Resonance Imaging, 2011; 29:630-8. PMCID: PMC3100356
  8. Smith DS, Welch EB, Li X, Arlinghaus LD, Loveless ME, Koyama T, Gore JC, Yankeelov TE. Quantitative effects of accelerated dynamic contrast enhanced MRI data using compressed sensing. Physics in Medicine and Biology, 2011; 56:4933-46. PMCID: PMC3192434
  9. Li, X, Welch EB, Chakravarthy B, Mayer I, Meszeoly I, Kelley M, Means-Powell J, Gore JC, Yankeelov TE. A novel AIF tracking method and comparison of DCE-MRI parameters using individual and population-based AIFs in human breast cancer. Physics in Medicine and Biology, 2011; 56:5753-69. PMCID: PMC3176673

 

Collection: QIN GBM DCE-MRI

  1. Gerstner ER, Zhang Z, Fink JR, Muzi M, Hanna L, Greco E, Mintz A, Kostakoglu L, Eikman EA, Prah MA, Ellingson BM, Ratai EM, Schmainda KM, Sorensen G, Barboriak DP,  Mankoff DA. ACRIN 6684: Assessment of tumor hypoxia in newly diagnosed GBM using 18F-FMISO PET and MRI. Clin Cancer Res 2016. Accepted.
  2. Gerstner ER, Zhang Z, Fink JR, Muzi M, Hanna L, Greco E, Mintz A, Kostakoglu L, Eikman EA, Prah M, Schmainda KM, Sorensen GA, Barboriak D,  Mankoff DA. ACRIN 6684: Assessment of tumor hypoxia in newly diagnosed GBM using 18F-FMISO PET and MRI. J Clin Oncol 33(Suppl):2024. 2015.
  3. Fink JR, Zhang Z, Gerstner ER, Muzi M, Kostakoglu L, Mintz A, Eikman EA, Barboriak D,  Mankoff DA. ACRIN 6684: Multicenter phase II assessment of tumor hypoxia in glioblastoma using 18F-Fluoromisonidazole (FMISO) PET and MRI. J Nucl Med 56(Suppl3):325. 2015.
  4. Fink JR, Muzi M, Peck M,  Krohn KA. Multimodality Brain Tumor Imaging: MR Imaging, PET, and PET/MR Imaging. J Nucl Med 56(10):1554-1561. 2015.
  5. Muzi M, Fink JR, Richards TL, Marro KI, Wong T, Muzi JP, Eary JF, Rockhill JK,  Krohn KA. Evaluation of PET and MR measurements to examine progression in glioma patients. J Nucl Med 55(Suppl1):1512-. 2014.

...

  1. Aerts, H. J. W. L. et al. Defining a Radiomic Response Phenotype: A Pilot Study using targeted therapy in NSCLC. Sci. Rep.(2016) 6, 33860 (link)
  2. Oliveira B, O'Halloran M, Conceicao R, Glavin M, Jones E. Development of Clinically-Informed 3D Tumor Models for Microwave Imaging Applications. IEEE Antennas and Wireless Propagation Letters 2016;15:520-3. doi: 10.1109/LAWP.2015.2456051

  3. Melouah A. Comparison of Automatic Seed Generation Methods for Breast Tumor Detection Using Region Growing Technique.  Computer Science and Its Applications: Springer; 2015. p. 119-28.
  4. Aerts HJ, Velazquez ER, Leijenaar RTH, Parmar C, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nature Communications, 2014. 5(4006). doi:10.1038/ncomms5006(link)
  5. Balagurunathan Y, Kumar V, Gu Y, Kim J, Wang H, Liu Y, Goldgof DB, Hall LO, Korn R, Zhao B. Test–Retest Reproducibility Analysis of Lung CT Image Features. Journal of digital imaging. 2014:1-19.
  6. Melouah, A. (2015). Comparison of Automatic Seed Generation Methods for Breast Tumor Detection Using Region Growing Technique. Computer Science and Its Applications, Springer: 119-128.

  7. Desseroit M-C, Visvikis D, Tixier F, Majdoub M, Perdrisot R, Guillevin R, Le Rest CC, Hatt M. Development of a nomogram combining clinical staging with 18F-FDG PET/CT image features in non-small-cell lung cancer stage I–III. European journal of nuclear medicine and molecular imaging. 2016:1-9. http://dx.doi.org/10.1007/s00259-016-3325-5

 

Info
titleThe following source material predate TCIA but refer to the data in this Collection
  1. Meyer CR, Armato SG III, Fenimore CP, McLennan G, Bidaut LM, Barboriak DP, Gavrielides MA, Jackson EF, McNitt-Gray MF, Kinahan PE, Petrick N, Zhao B. Quantitative imaging to assess tumor response to therapy: Common themes of measurement, truth data and error sources. Translational Oncology 2: 198–210, 2009. (link)
  2. McNitt-Gray MF, Bidaut LM, Armato SG III, Meyer CR, Gavrielides MA, Fenimore CP, McLennan G, Petrick N, Zhao B, Reeves AP, Beichel R, Kim H-J, Kinnard L. CT assessment of response to therapy: Tumor volume change measurement, truth data and error.

...

  1. Translational Oncology2009. 2:216–222. (link)
  2. Kinahan PE, Doot RK, Wanner-Roybal M, Bidaut LM, Armato SG III, Meyer CR, McLennan G.PET/CT assessment of response to therapy: Tumor change measurement, truth data and error.

...

  1. Translational Oncology 2:223–230, 2009. (link)
  2. Jackson EF, Barboriak DP, Bidaut LM, Meyer CR. Magnetic resonance assessment of response to therapy: tumor change measurement, truth data and error sources.Translational Oncology 2009 Dec;2(4):211-5. PubMed PMID: 19956380; PubMed Central PMCID: PMC2781079. (link)
  3. Armato SG 3rd, Meyer CR, Mcnitt-Gray MF, McLennan G, Reeves AP, Croft BY, Clarke LP;RIDER Research Group. The Reference Image Database to Evaluate Response to therapy in lung cancer (RIDER) project: a resource for the development of change-analysis software.Clin Pharmacol Ther. 2008 Oct;84(4):448-56. PubMed PMID: 18754000. (link)

...

Melouah, A. (2015). Comparison of Automatic Seed Generation Methods for Breast Tumor Detection Using Region Growing Technique. Computer Science and Its Applications, Springer: 119-128.

...

 

Collection:  TCGA-BRCA

  1. Mazurowski MA, Zhang J, Grimm LJ, Yoon SC, Silber JI. Radiogenomic Analysis of Breast Cancer: Luminal B Molecular Subtype Is Associated with Enhancement Dynamics at MR Imaging. Radiology, 2014. doi: 10.1148/radiol.14132641 (link)
  2. Lavasani, S. N., A. F. Kazerooni, et al. (2015). Discrimination of Benign and Malignant Suspicious BreastTumors Based on Semi-Quantitative DCE-MRI ParametersEmploying Support Vector Machine. Frontiers in Biomedical Technologies 2(2): 397-403.

  3. Anand, S., V. Vinod, et al. Application of Fuzzy c-means and Neural networks to categorize tumor affected breast MR Images. International Journal of Applied Engineering Research 10(64): 2015.

  4. Guo, W., H. Li, et al. (2015). Prediction of clinical phenotypes in invasive breast carcinomas from the integration of radiomics and genomics data. Journal of Medical Imaging 2(4): 041007-041007.

...