Summary

Redirection Notice

This page will redirect to https://www.cancerimagingarchive.net/collection/head-neck-pet-ct/ in about 5 seconds.

This collection contains FDG-PET/CT and radiotherapy planning CT imaging data of 298  patients from four different institutions in Québec with histologically proven head-and-neck cancer (H&N) All patients had pre-treatment FDG-PET/CT scans between April 2006 and November 2014, and within a median of 18 days (range: 6-66) before treatment. Dates in the TCIA images have been changed in the interest of de-identification; the same change was applied across all images, preserving the time intervals between serial scans.  These patients were all part of a study described in further detail  (treatment, image scanning protocols, etc.)  in the publication:

Publication Citation

Vallières, M. et al. Radiomics strategies for risk assessment of tumour failure in head-and-neck cancer. Sci Rep 7, 10117 (2017). doi: 10.1038/s41598-017-10371-5

Note:  Subsequent to publishing this manuscript it was discovered images from  two patients included in the analysis had errors and should not be used in future studies.  Therefore these have not been included in this TCIA data set, leaving 298 patients of the original 300 analyzed.

In the original study, 93 of the 300 patients (31 %), the radiotherapy contours were directly drawn on the CT of the FDG-PET/CT scan by expert radiation oncologists and thereafter used for treatment planning. For 207 of the 300 patients (69 %), the radiotherapy contours were drawn on a different CT scan dedicated to treatment planning and were propagated/resampled to the FDG-PET/CT scan reference frame using intensity-based free-form deformable registration with the software MIM® (MIM software Inc., Cleveland, OH).

Patients with recurrent H&N cancer or with metastases at presentation, and patients receiving palliative treatment were excluded from the study. From the 300 patients, 48 received radiation alone (16 %) and 252 received chemo-radiation (84 %) with curative intent as part of treatment management. The median follow-up period of all patients was 43 months (range: 6-112). Patients that did not develop a locoregional recurrence or distant metastases during the follow-up period and that had a follow-up time smaller than 24 months were also excluded from the study. During the follow-up period, 45 patients developed a locoregional recurrence (15 %), 40 patients developed distant metastases (13 %) and 56 patients died (19 %).  

We analyzed the FDG-PET and CT images of the 300 patients from four different cohorts for the risk assessment of locoregional recurrences (LR) and distant metastases in H&N cancer. Prediction models combining radiomic and clinical variables were constructed via random forests and imbalance-adjustment strategies using two of the four cohorts. Independent validation of the prediction and prognostic performance of the models was carried out on the other two cohorts (LR: AUC = 0.69 and CI = 0.67; DM: AUC = 0.86 and CI = 0.88). Furthermore, the results obtained via Kaplan-Meier analysis demonstrated the potential of radiomics for assessing the risk of specific tumour outcomes using multiple stratification groups.

Please contact contact TCIA's Helpdesk for scientific or other inquiries about this dataset. 

Acknowledgements

We would like to acknowledge the individuals and institutions that have provided data for this collection:

  • McGill University, Montreal, Canada - Special thanks to Martin Vallières of the Medical Physics Unit


Data Access

Some data in this collection contains images that could potentially be used to reconstruct a human face. To safeguard the privacy of participants, users must sign and submit a TCIA Restricted License Agreement to help@cancerimagingarchive.net before accessing the data.

Data TypeDownload all or Query/FilterLicense
Images and Radiation Therapy Structures (298 subjects, DICOM, 72.5 GB)


(Download requires the NBIA Data Retriever)

Clinical Data (300 subjects, XLS, 48 kB)
Names of GTV contours (298 subjects, XLS, 14 kB)


Additional Resources for this Dataset

The following external resources have been made available by the data submitters.  These are not hosted or supported by TCIA, but may be useful to researchers utilizing this collection.

Detailed Description

Collection Statistics


Modalities

CT, PT, REG, RTSTRUCT, RTPLAN, RTDOSE

Number of Participants

298

Number of Studies

 504

Number of Series

 2661

Number of Images

123,271

Images Size (GB) 72.5


We hope the available data and source code will facilitate the standardization and reproducibility of methods in the radiomics community.
  • Clinical Data – This spreadsheet includes patient information, histopathological type, tumour grade, outcome follow-up information (metastases, survival), etc.
  • Names of GTV contours -- This spreadsheet contains all the names of the "GTV primary" and "GTV lymph nodes" structures (as found in the associated RTstruct files) used in the publication of (Vallières et al., Sci Rep 7, 2017). Names of different structures are separated by commas in a given entry of the spreadsheet.

Note:  the images contain no private-vendor DICOM tags.

Citations & Data Usage Policy 

Users must abide by the TCIA Data Usage Policy and Restrictions. Attribution should include references to the following citations:

Data Citation

Martin Vallières, Emily Kay-Rivest, Léo Jean Perrin, Xavier Liem, Christophe Furstoss, Nader Khaouam, Phuc Félix Nguyen-Tan, Chang-Shu Wang, Khalil Sultanem. (2017). Data from Head-Neck-PET-CT. The Cancer Imaging Archive. doi: 10.7937/K9/TCIA.2017.8oje5q00

Publication Citation

Vallières, M., Kay-Rivest, E., Perrin, L. J., Liem, X., Furstoss, C., Aerts, H. J. W. L., Khaouam, N., Nguyen-Tan, P. F., Wang, C.-S., Sultanem, K., Seuntjens, J., & El Naqa, I. (2017). Radiomics strategies for risk assessment of tumour failure in head-and-neck cancer. In Scientific Reports (Vol. 7, Issue 1).  DOI: https://doi.org/10.1038/s41598-017-10371-5

TCIA Citation

Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, Phillips S, Maffitt D, Pringle M, Tarbox L, Prior F. The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository. Journal of Digital Imaging (Vol. 26, Issue 6, pp. 1045–1057).  DOI: https://doi.org/10.1007/s10278-013-9622-7

Other Publications Using This Data

TCIA maintains a list of publications which leverage TCIA data. If you have a manuscript you'd like to add please contact TCIA's Helpdesk.

Version 2 (Current): Updated 2018/06/07

Data TypeDownload all or Query/Filter

Images (DICOM, 72.5 GB)

NB: 298 of 300 subjects

     

(Requires the NBIA Data Retriever .)

Clinical Data (XLS)
Names of GTV contours (XLS)
Source Code (web)

Added 250 total DICOM series to 162 total subjects that had been missing.

Version 1: Updated 2017/11/30

Data TypeDownload all or Query/Filter

Images (DICOM, 58.1 GB)

NB: 298 of 300 subjects

Clinical Data (XLS)
Names of GTV contours (XLS)
Source Code (web)


  • No labels