Child pages
  • The Chinese Mammography Database (CMMD)

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Localtab Group


Localtab
activetrue
titleData Access

Data Access

Data TypeDownload all or Query/Filter

Images (DICOM, XX22.X 9 GB)

Tcia button generator

Tcia button generator
labelSearch

(Download requires the NBIA Data Retriever)

Clinical data (CSV)

Tcia button generator

Inclusion-Exclusion criteria (pdf)

Tcia button generator
urlhttps://wiki.cancerimagingarchive.net/download/attachments/70230508/CMMD_Inclusion_Exclusion_criteria.pdf

Click the Versions tab for more info about data releases.

Please contact help@cancerimagingarchive.net  with any questions regarding usage.


Localtab
titleDetailed Description

Detailed Description

Image Statistics


Modalities

MG

Number of Patients

1775

Number of Studies

1775

Number of Series

1775

Number of Images

5202

Images Size (GB)22.9 GB
  • Mammography images were collected in .TIFF format.
  • Clinical data are saved in .CSV format
  • laterality and view in a CSV to facilitate our conversion to DICOM



Localtab
titleCitations & Data Usage Policy

Citations & Data Usage Policy

Tcia license 4 international


Info
titleData Citation

Cui, Chunyan; Li Li; Cai, Hongmin; Fan, Zhihao; Zhang, Ling; Dan, Tingting; Li, Jiao; Wang, Jinghua. (2021) The Chinese Mammography Database (CMMD): An online mammography database with biopsy confirmed types for machine diagnosis of breast. The Cancer Imaging Archive. DOI: https://doi.org/10.7937/tcia.eqde-4b16

DOI IS IN DRAFT MODE WITHOUT AN ABSTRACT 3/12/21 -QUESTIONS:

Do we need to acknowledge DClunie's work to convert TIF to DICOM and how is that acknowledged,
is the abstract exactly what this group wants to see?


Info
titlePublication Citation

Cai, H., Huang, Q., Rong, W., Song, Y., Li, J., Wang, J., Chen, J., & Li, L. (2019). Breast Microcalcification Diagnosis Using Deep Convolutional Neural Network from Digital Mammograms. Computational and Mathematical Methods in Medicine, 2019, 1–10. https://doi.org/10.1155/2019/2717454

Wang, J., Yang, X., Cai, H., Tan, W., Jin, C., & Li, L. (2016). Discrimination of Breast Cancer with Microcalcifications on Mammography by Deep Learning. Scientific Reports, 6(1). https://doi.org/10.1038/srep27327


Info
titleTCIA Citation

Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., Moore, S., Phillips, S., Maffitt, D., Pringle, M., Tarbox, L., & Prior, F. (2013). The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository. Journal of Digital Imaging, 26(6), 1045–1057. https://doi.org/10.1007/s10278-013-9622-7

Other Publications Using This Data

TCIA maintains a list of publications which leverage TCIA data. If you have a manuscript you'd like to add please contact the TCIA Helpdesk.


Localtab
titleVersions

Version 1 (Current): Updated yyyy/mm/dd

Data TypeDownload all or Query/Filter
Images (DICOM, 22.9 GB)

Tcia button generator

Tcia button generator
labelSearch

(Requires NBIA Data Retriever.)



...