Summary
We leveraged this imaging dataset to assess the comparative performance of deep learning, atlas-based, and model-based autosegmentation methods across both normal and edge case cohorts: https://doi.org/10.1016/j.phro.2023.100413. In this paper and in the figure on the right, we show the Cross-sectional CT-based anatomy and autosegmentation performance for representative edge cases.
A) Hypertrophic prostate edge case. Each panel depicts a focused excerpt from a single CT scan, centered about two different structures (prostate, bladder) in three different planes (axial, sagittal, coronal). Clinician-delineated “ground truth” contours (MD) for each structure are shown in red, while atlas-based (AB), model-based (MB), and deep-learning based (DL) autosegmented contours are depicted in green, orange, and blue, respectively. Numerical values represent DSC for the corresponding autosegmented volumes compared to MD volumes.
B) So-called “droopy” seminal vesicles edge case. Each panel depicts a focused excerpt from a single CT scan, centered about the prostate in two different planes (axial, sagittal). All colors and labeling are as in Panel A).
Data Access
Data Type | Download all or Query/Filter | License |
---|---|---|
Images and Radiation Therapy Structures (DICOM, 17 GB) | (Download requires NBIA Data Retriever) |
Click the Versions tab for more info about data releases.
Additional Resources for this Dataset
The NCI Cancer Research Data Commons (CRDC) provides access to additional data and a cloud-based data science infrastructure that connects data sets with analytics tools to allow users to share, integrate, analyze, and visualize cancer research data.
- Imaging Data Commons (IDC) (Imaging Data)
Detailed Description
Image Statistics | Radiology Image Statistics |
---|---|
Modalities | CT, RTSTRUCT |
Number of Patients | 131 |
Number of Studies | 131 |
Number of Series | 262 |
Number of Images | 23,490 |
Images Size (GB) | 17 |
Citations & Data Usage Policy
Users must abide by the TCIA Data Usage Policy and Restrictions. Attribution should include references to the following citations:
Data Citation
Thompson, R. F., Kanwar, A., Merz, B., Cohen, E., Fisher, H., Rana, S., Claunch, C., & Hung, A. (2023). Stress-Testing Pelvic Autosegmentation Algorithms Using Anatomical Edge Cases (Prostate Anatomical Edge Cases) (Version 1) [Data set]. The Cancer Imaging Archive. https://doi.org/10.7937/QSTF-ST65
Publication Citation
Kanwar, A., Merz, B., Claunch, C., Rana, S., Hung, A., & Thompson, R. F. (2023). Stress-testing pelvic autosegmentation algorithms using anatomical edge cases. In Physics and Imaging in Radiation Oncology (Vol. 25, p. 100413). Elsevier BV. https://doi.org/10.1016/j.phro.2023.100413
TCIA Citation
Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., Moore, S., Phillips, S., Maffitt, D., Pringle, M., Tarbox, L., & Prior, F. (2013). The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository. In Journal of Digital Imaging (Vol. 26, Issue 6, pp. 1045–1057). Springer Science and Business Media LLC. https://doi.org/10.1007/s10278-013-9622-7
Other Publications Using This Data
TCIA maintains a list of publications which leverage TCIA data. If you have a manuscript you'd like to add please contact TCIA's Helpdesk.
Version 1 (Current): Updated 2023/05/18
Data Type | Download all or Query/Filter | License |
---|---|---|
Images and Radiation Therapy Structures (DICOM, 17 GB) | (Download requires the NBIA Data Retriever) |