Summary
These resources represent an unprecedented platform for exploring the anatomic and genetic basis of glioblastoma at the cellular and molecular levels. In addition to the DICOM images in TCIA there are two interactive databases linked together by de-identified tumor specimen numbers to facilitate comparisons across data modalities:
- Ivy Glioblastoma Atlas Project - An open/public database providing in situ hybridization (ISH) and RNA sequencing (RNA-Seq) data, which map gene expression across the anatomic structures and putative cancer stem cell clusters in glioblastoma. The associated histological dataset is annotated and is suitable for neuropathological examination.
- Ivy GAP Clinical and Genomic Database - A database offering detailed clinical, genomic, and expression array data sets that are designed to elucidate the pathways involved in glioblastoma development and progression. This database requires registration for access.
The Ivy GAP is described in the resource paper (70 authors not all listed here) : Puchalski, R. B., Shah, N., …, Foltz, G. D. (2018). An anatomic transcriptional atlas of human glioblastoma. In Science (Vol. 360, Issue 6389, pp. 660–663). https://doi.org/10.1126/science.aaf2666
For scientific or other inquiries about this dataset, please contact the TCIA Helpdesk.
Data Access
Data Type | Download all or Query/Filter | License |
---|---|---|
Images (DICOM, 130.4GB) |
Click the Versions tab for more info about data releases.
Additional Resources for this Dataset
IvyGap provides access to additional resources for this data.
- Summary ISH, RNA, gene expression and clinical data
- Detailed clinical, genomic, and expression array data
- Pathology images
Third Party Analyses of this Dataset
TCIA encourages the community to publish your analyses of our datasets. Below is a list of such third party analyses published using this Collection:
Detailed Description
Collection Statistics | |
---|---|
Modalities | MR |
Number of Participants | 39 |
Number of Studies | 390 |
Number of Series | 5223 |
Number of Images | 846743 |
Image Size (GB) | 130.4 |
Supporting Documentation
In addition to the DICOM images in TCIA there are two additional databases linked together by de-identified tumor specimen numbers to facilitate comparisons across data modalities:
- The Ivy Glioblastoma Atlas Project web site includes the following data:
- ISH: Image data at cellular resolution of in situ hybridization (ISH) tissue sections and adjacent hematoxylin and eosin (H&E)-stained sections annotated for anatomic structures
- Anatomic Structures ISH Survey: Primary screen of 8 tumors with probes for 343 genes enriched in glioblastoma.
- Anatomic Structures ISH for Enriched Genes: Subsequent screen of 29 tumors with probes for 37 genes enriched in glioblastoma structures identified in Anatomic Structures RNA-Seq Study (see below).
- Cancer Stem Cells ISH Survey: Primary screen of 16 tumors with probes for 55 genes enriched in putative cancer stem cells, resulting in a 20 probe reference set, which was then used in an extensive screen of 42 tumors.
- Cancer Stem Cells ISH for Enriched Genes: Subsequent screen of 37 tumors with probes for 76 genes enriched in clusters of putative cancer stem cells identified in the Cancer Stem Cells RNA-Seq Study (see below).
- RNA-Seq: RNA sequencing data for anatomic structures identified in the Anatomic Structures ISH Survey and putative cancer stem cell clusters isolated by laser microdissection
- Anatomic Structures RNA-Seq: Screen of 5 structures (Leading Edge, Infiltrating Tumor, Cellular Tumor, Microvascular Proliferation, and Pseudopalisading Cells Around Necrosis) identified by H&E staining. A total of 122 RNA samples were generated from 10 tumors.
- Cancer Stem Cells RNA-Seq: Screen of 35 clusters of putative cancer stem cells identified by ISH with a 17 reference probe subset (validated in the Cancer Stem Cells ISH Survey). A total of 148 RNA samples were generated from 34 tumors.
- Specimen Metadata: De-identified clinical data for each patient and tumor.
- ISH: Image data at cellular resolution of in situ hybridization (ISH) tissue sections and adjacent hematoxylin and eosin (H&E)-stained sections annotated for anatomic structures
- The Ivy GAP Clinical and Genomic Database contains detailed clinical information including pathology images, genomic data, and prospectively collected outcomes data. This site requires separate registration.
- Additionally, the pathology images from this study are also available externally from here on Amazon Web Services (AWS).
Citations & Data Usage Policy
Users must abide by the TCIA Data Usage Policy and Restrictions. Attribution should include references to the following citations:
Data Citation
Shah, N., Feng, X., Lankerovich, M., Puchalski, R. B., & Keogh, B. (2016). Data from Ivy Glioblastoma Atlas Project (IvyGAP) [Data set]. The Cancer Imaging Archive. https://doi.org/10.7937/K9/TCIA.2016.XLwaN6nL
Publication Citation
TCIA Citation
Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., Moore, S., Phillips, S., Maffitt, D., Pringle, M., Tarbox, L., & Prior, F. (2013). The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository. Journal of Digital Imaging, 26(6), 1045–1057. https://doi.org/10.1007/s10278-013-9622-7
Other Publications Using This Data
TCIA maintains a list of publications that leverage our data. If you have a publication you'd like to add, please contact TCIA's Helpdesk.
- Beig, N., Bera, K., Prasanna, P., Antunes, J., Correa, R., Singh, S., . . . Tiwari, P. (2020). Radiogenomic-Based Survival Risk Stratification of Tumor Habitat on Gd-T1w MRI Is Associated with Biological Processes in Glioblastoma. Clin Cancer Res. doi:10.1158/1078-0432.CCR-19-2556
- Gevaert, O., Nabian, M., Bakr, S., Everaert, C., Shinde, J., Manukyan, A., . . . Pochet, N. (2020). Imaging-AMARETTO: An Imaging Genomics Software Tool to Interrogate Multiomics Networks for Relevance to Radiography and Histopathology Imaging Biomarkers of Clinical Outcomes. JCO Clin Cancer Inform, 4, 421-435. doi:10.1200/CCI.19.00125
- Le, N. Q. K., Hung, T. N. K., Do, D. T., Lam, L. H. T., Dang, L. H., & Huynh, T.-T. (2021). Radiomics-based machine learning model for efficiently classifying transcriptome subtypes in glioblastoma patients from MRI. Comput Biol Med, 132, 104320. doi:10.1016/j.compbiomed.2021.104320
- Mi, E., Mauricaite, R., Pakzad-Shahabi, L., Chen, J., Ho, A., & Williams, M. (2022). Deep learning-based quantification of temporalis muscle has prognostic value in patients with glioblastoma. Br J Cancer, 126(2), 196-203. doi:10.1038/s41416-021-01590-9
- Miller, T. E., Liau, B. B., Wallace, L. C., Morton, A. R., Xie, Q., Dixit, D., . . . Rich, J. N. (2017). Transcription elongation factors represent in vivo cancer dependencies in glioblastoma. Nature, 547(7663), 355. doi:10.1038/nature23000
- Puchalski, R. B., Shah, N., Miller, J., Dalley, R., Nomura, S. R., Yoon, J.-G., . . . Foltz, G. D. (2018). An anatomic transcriptional atlas of human glioblastoma. Science, 360(6389), 660-663. doi:10.1126/science.aaf2666
- Soike, M. H., McTyre, E. R., Shah, N., Puchalski, R. B., Holmes, J. A., Paulsson, A. K., . . . Strowd, R. E. (2018). Glioblastoma radiomics: can genomic and molecular characteristics correlate with imaging response patterns? Neuroradiology, 1-9. doi:10.1007/s00234-018-2060-y
- van der Voort, S. R., Incekara, F., Wijnenga, M. M. J., Kapsas, G., Gahrmann, R., Schouten, J. W., . . . Klein, S. (2022). Combined molecular subtyping, grading, and segmentation of glioma using multi-task deep learning. Neuro Oncol. doi:10.1093/neuonc/noac166
- Verma, R., Hill, V. B., Statsevych, V., Bera, K., Correa, R., Leo, P., . . . Tiwari, P. (2022). Stable and Discriminatory Radiomic Features from the Tumor and Its Habitat Associated with Progression-Free Survival in Glioblastoma: A Multi-Institutional Study. American Journal of Neuroradiology, 43(8), 1115-1123. doi:10.3174/ajnr.A7591
- Vo, V. T. A., Kim, S., Hua, T. N. M., Oh, J., & Jeong, Y. (2022). Iron commensalism of mesenchymal glioblastoma promotes ferroptosis susceptibility upon dopamine treatment. Communications Biology, 5(1). doi:10.1038/s42003-022-03538-y
- Zander, E., Ardeleanu, A., Singleton, R., Bede, B., Wu, Y., & Zheng, S. (2022). A functional artificial neural network for noninvasive pretreatment evaluation of glioblastoma patients. Neurooncol Adv, 4(1), vdab167. doi:10.1093/noajnl/vdab167
- Zheng, S., & Tao, W. (2021). Identification of Novel Transcriptome Signature as a Potential Prognostic Biomarker for Anti-Angiogenic Therapy in Glioblastoma Multiforme. Cancers (Basel), 13(5). doi:10.3390/cancers13051013
Altmetrics
Version 1 (Current): Updated 2016/12/30
Data Type | Download all or Query/Filter |
---|---|
Images (DICOM, 130.4GB) | (Download requires the NBIA Data Retriever) |
Summary ISH, RNA, gene expression and clinical data (external) | |
Detailed clinical, genomic, and expression array data (external) | |
Pathology images (external) |