Summary
Acknowledgement
- Data collection and analysis was provided by Anant Madabhushi, PhD, Case Western Reserve University and Michael D. Feldman, MD, PhD, Hospital at the University of Pennsylvania.
- This work was supported by NIH R01CA136535.
Data Access
Data Type | Download all or Query/Filter | License |
---|---|---|
Images (DICOM, 4.4 GB) | (Download requires the NBIA Data Retriever) | |
Annotated Whole Slide Pathology Images & Annotations (Tiff, XML 76.8 GB) | (Download and apply the IBM-Aspera-Connect plugin to your browser to retrieve this faspex package) | |
Fused Rad-Path Matlab Files (zip, 65 kB) | ||
Correspondence tables (XLSX, 22 kB) |
Click the Versions tab for more info about data releases.
Additional Resources for this Dataset
The NCI Cancer Research Data Commons (CRDC) provides access to additional data and a cloud-based data science infrastructure that connects data sets with analytics tools to allow users to share, integrate, analyze, and visualize cancer research data.
- Imaging Data Commons (IDC) (Imaging Data)
Detailed Description
Collection Statistics | Radiology Image Statistics | Pathology Image Statistics |
---|---|---|
Modalities | MRI | Pathology, Matlab |
Number of Participants | 28 | 16 |
Number of Studies | 28 | N/A |
Number of Series | 324 | N/A |
Number of Images | 32,508 | 114 |
Image Size (GB) | 4.4 | 76.8 |
Supporting Documentation
The data set is fully described in the following publications:
Singanamalli, A. , Rusu, M. , Sparks, R. E., Shih, N. N., Ziober, A. , Wang, L. , Tomaszewski, J. , Rosen, M. , Feldman, M. and Madabhushi, A. (2016), Identifying in vivo DCE MRI markers associated with microvessel architecture and gleason grades of prostate cancer. J. Magn. Reson. Imaging, 43: 149-158. doi: https://doi.org/10.1002/jmri.24975 (PMID:26110513).
- Toth, R, Feldman, M, Yu, D, Tomaszewski, J, Madabhushi, A, “Histostitcher™: An Informatics Software Platform for Reconstructing Whole-Mount Prostate Histology using the Extensible Imaging Platform (XIP™) Framework,” Journal of Pathology Informatics, vol. 5, pg. 8, 2014 (PMID: 24843820, PMCID: PMC4023035). https://doi.org/10.4103/2153-3539.129441
- Xiao, G, Bloch, N, Chappelow, J, Genega, E, Rofsky, N, Lenkinsky, R, Tomaszewski, J, Feldman, M, Rosen, M, Madabhushi, A, “Determining Histology-MRI Slice Correspondences for Defining MRI-based Disease Signatures of Prostate Cancer,” Special Issue of Computerized Medical Imaging and Graphics on Whole Slide Microscopic Image Processing, vol. 35[7-8], pp. 568-78, 2011 (PMID: 21255974). https://doi.org/10.1016/j.compmedimag.2010.12.003
- Chappelow, J, Bloch, N., Rofsky, N, Genega, E, Lenkinski, R, DeWolf, W, Madabhushi, A, “Elastic Registration of Multimodal Prostate MRI and Histology via Multi-Attribute Combined Mutual Information,” Medical Physics, vol. 38[4], pp. 2005-2018, 2011 (PMID: 21626933). https://doi.org/10.1118/1.3560879
Citations & Data Usage Policy
Users must abide by the TCIA Data Usage Policy and Restrictions. Attribution should include references to the following citations:
Data Citation
Madabhushi, A., & Feldman, M. (2016). Fused Radiology-Pathology Prostate Dataset (Prostate Fused-MRI-Pathology) . The Cancer Imaging Archive. doi; 10.7937/k9/TCIA.2016.tlpmr1am
Publication Citation
Singanamalli, A. , Rusu, M. , Sparks, R. E., Shih, N. N., Ziober, A. , Wang, L. , Tomaszewski, J. , Rosen, M. , Feldman, M. and Madabhushi, A. (2016), Identifying in vivo DCE MRI markers associated with microvessel architecture and gleason grades of prostate cancer. J. Magn. Reson. Imaging, 43: 149-158. doi: 10.1002/jmri.24975 (PMID:26110513).
Publication Citation
Toth, R, Feldman, M, Yu, D, Tomaszewski, J, Madabhushi, A, “Histostitcher™: An Informatics Software Platform for Reconstructing Whole-Mount Prostate Histology using the Extensible Imaging Platform (XIP™) Framework,” Journal of Pathology Informatics, vol. 5, pg. 8, 2014 (PMID: 24843820, PMCID: PMC4023035). https://doi.org/10.4103/2153-3539.129441
Publication Citation
Xiao, G, Bloch, N, Chappelow, J, Genega, E, Rofsky, N, Lenkinsky, R, Tomaszewski, J, Feldman, M, Rosen, M, Madabhushi, A, “Determining Histology-MRI Slice Correspondences for Defining MRI-based Disease Signatures of Prostate Cancer,” Special Issue of Computerized Medical Imaging and Graphics on Whole Slide Microscopic Image Processing, vol. 35[7-8], pp. 568-78, 2011 (PMID: 21255974). https://doi.org/10.1016/j.compmedimag.2010.12.003
Publication Citation
Chappelow, J, Bloch, N., Rofsky, N, Genega, E, Lenkinski, R, DeWolf, W, Madabhushi, A, “Elastic Registration of Multimodal Prostate MRI and Histology via Multi-Attribute Combined Mutual Information,” Medical Physics, vol. 38[4], pp. 2005-2018, 2011 (PMID: 21626933). https://doi.org/10.1118/1.3560879
TCIA Citation
Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, Phillips S, Maffitt D, Pringle M, Tarbox L, Prior F. The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository, Journal of Digital Imaging, Volume 26, Number 6, December, 2013, pp 1045-1057. DOI: https://doi.org/10.1007/s10278-013-9622-7
Other Publications Using This Data
TCIA maintains a list of publications which leverage our data. If you have a publication you'd like to add, please contact TCIA's Helpdesk.
- Brunese, L., Mercaldo, F., Reginelli, A., & Santone, A. (2020). Formal methods for prostate cancer gleason score and treatment prediction using radiomic biomarkers. Magnetic resonance imaging, 66, 165-175. doi:https://doi.org/10.1016/j.mri.2019.08.030
- Chatzoudis, P. (2018). MRI prostate cancer radiomics: Assessment of effectiveness and perspectives. (Master of Biomedical Engineering). Delft University of Technology, Delft, Netherlands. Retrieved from http://resolver.tudelft.nl/uuid:b8459bdb-1761-4f17-8807-e3b1cf7da629
- Duran, A., Dussert, G., Rouviere, O., Jaouen, T., Jodoin, P. M., & Lartizien, C. (2022). ProstAttention-Net: A deep attention model for prostate cancer segmentation by aggressiveness in MRI scans. Medical image analysis, 77, 102347. doi:https://doi.org/10.1016/j.media.2021.102347
Version 2 (Current): Updated 2023/04/10
Data Type | Download all or Query/Filter | License |
---|---|---|
Images (DICOM, 4.4 GB) | (Download requires the NBIA Data Retriever) | |
Annotated Whole Slide Pathology Images & Annotations (Tiff, XML 76.8 GB) | IBM-Aspera-Connect plugin to your browser to retrieve this faspex package) (Download and apply the | |
Fused Rad-Path Matlab Files | ||
Correspondence tables (XLSX) |
Added a correspondence xlsx between MR and Pathology slides, imaging data are unchanged.
Version 1: Updated 2016/11/30
Data Type | Download all or Query/Filter |
---|---|
Images (DICOM, 4.4 GB) | (Download requires the NBIA Data Retriever) |
Annotated Whole Slide Pathology Images & Annotations (Tiff, XML 76.8 GB) | (Download and apply the IBM-Aspera-Connect plugin to your browser to retrieve this faspex package) |
Fused Rad-Path MATLAB Files |