Maintenance

Thursday evening the 17th at 7 pm there will be a 5 minute disruption in TCIA as the primary firewalls are updated to the latest in-version software. On Thursday the 24th, there be another 5-10 minute disruption as the primary firewalls are moved to new hardware.

Child pages
  • The VICTRE Trial: Open-Source, In-Silico Clinical Trial For Evaluating Digital Breast Tomosynthesis
Skip to end of metadata
Go to start of metadata

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 3 Next »

Summary

A total of 2986 subjects, with breast sizes and radiographic densities representative of a screening population and compressed thicknesses from 3.5 to 6 cm, were simulated and imaged on in-silico versions of DM and DBT systems using fast Monte Carlo x-ray transport. Images were interpreted by a computational reader detecting the presence of lesions. The in-silico trial (VICTRE) was designed to replicate a comparative trial from a previous regulatory submission. The endpoint was the difference in area under the receiver-operating-characteristic curve between modalities (delta-AUC) for lesion detection. Using a fully-crossed design, VICTRE was sized for a standard error (SE) of 0.01 in delta-AUC, half the uncertainty seen in the comparative trial.

Expensive and lengthy clinical trials delay regulatory evaluation of innovative medical technologies affecting patient access to high-quality medical products. Sophisticated simulation tools are increasingly being used in device development, but are rarely used in regulatory applications. We investigate a new paradigm for evaluating digital breast tomosynthesis (DBT) as a replacement for digital mammography (DM), using exclusively in-silico methods.

Researchers studying radiomics will be able to evaluate features for robustness across a variety of scanners. Features can be calculated using the researchers own software or third party software such as IBEX (imaging biomarker explorer).

Related publications: http://journals.lww.com/investigativeradiology/Abstract/2015/11000/Measuring_Computed_Tomography_Scanner_Variability.3.aspx                 

The following paper was generated on different imaging modalities but the same phantom, this is a related but independent paper with a different set of authors:  http://tinyurl.com/zm7tr7p

This data set was provided to TCIA by Authors: Mackin, Dennis; Fave, Xenia; Zhang, Lifei; Fried, David; Yang, Jinzhong; Taylor, Brian; Rodriguez-Rivera, Edgardo; Dodge, Cristina; Jones, Aaron Kyle; and Court, Laurence.  

 

Data Access

Choosing the Download option will provide you with a file to launch the TCIA Download Manager to download the entire collection. If you want to browse or filter the data to select only specific scans/studies please use the Search By Collection option.

Data TypeDownload all or Query/Filter
Images (DICOM, 1.33 GB) 

Click the Versions tab for more info about data releases.

Detailed Description

Collection Statistics

Updated 2017/05/01

Modalities

FFDM, DBT


Number of Patients


Number of Studies


Number of Series


Number of Images


Image Size (GB)

Supporting Documentation and Metadata

Acquisition parameters for the phantom scans in this Collection:

Scan

Manufacturer

Model

Kernel

Type

Slice Thickness (mm)

Pixel (mm)

Spiral Pitch Factor

kVp

Effective mAs

CTDIvol (mGy)

CCR1-GE1

GE

Discovery CT750 HD

standard

helical

2.5

0.49

0.98

120

81

6.19

CCR1-GE2

GE

Discovery CT750 HD

standard

axial

2.5

0.70

1.00

120

300

 

CCR1-GE3

GE

Discovery CT750 HD

standard

helical

2.5

0.78

0.98

120

122

9.3

CCR1-GE4

GE

Discovery ST

standard

helical

2.5

0.98

1.35

120

143

16.3

CCR1-GE5

GE

LightSpeed RT

standard

helical

2.5

0.98

0.75

120

1102

53.6

CCR1-GE6

GE

LightSpeed RT16

standard

helical

2.5

0.98

0.94

120

367

18.8

CCR1-GE7

GE

LightSpeed VCT

standard

helical

2.5

0.74

0.98

120

82

 

CCR1-P1

Philips

Brilliance Big Bore

B

helical

3.0

0.98

0.94

120

320

17.8

CCR1-P2

Philips

Brilliance Big Bore

C

helical

3.0

0.98

0.94

120

369

15.8

CCR1-P3

Philips

Brilliance Big Bore

B

helical

3.0

1.04

0.81

120

320

19.9

CCR1-P4

Philips

Brilliance Big Bore

B

helical

3.0

1.04

0.81

120

369

19.9

CCR1-P5

Philips

Brilliance 64

B

helical

3.0

0.98

0.67

120

372

16.4

CCR1-S1

Siemens

Sensation Open

B31s

axial

3.0

0.54

1.00

120

26 - 70

1.5

CCR1-S2

Siemens

SOMATOM Definition Flash

['I70f', '2']

helical

2.0

0.52

0.60

120

17 - 28

 

CCR1-T1

Toshiba

Aquilion

FC18

helical

3.0

0.63

1.11

120

135

4.0

CCR1-T2

Toshiba

Aquilion

FC18

helical

3.0

0.63

1.11

120

135

3.8

CCR1-T3

Toshiba

Aquilion ONE

FC18

helical

3.0

0.98

0.99

120

151

13.5

Citations & Data Usage Policy 

This collection is freely available to browse, download, and use for commercial, scientific and educational purposes as outlined in the Creative Commons Attribution 3.0 Unported License.  See TCIA's Data Usage Policies and Restrictions for additional details. Questions may be directed to help@cancerimagingarchive.net.

Please be sure to include the following citations in your work if you use this data set:

Data Citation

Badano A, Graff CG, Badal A, Sharma D, Zeng R, Samuelson FW, Glick S, Myers KJ. Open-Source, In-Silico Clinical Trial for Evaluating Digital Breast Tomosynthesis.

TCIA Citation

Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, Phillips S, Maffitt D, Pringle M, Tarbox L, Prior F. The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository, Journal of Digital Imaging, Volume 26, Number 6, December, 2013, pp 1045-1057. (paper)

 

Other Publications Using This Data

TCIA maintains a list of publications which leverage our data.If you have a publication you'd like to add please contact the TCIA Helpdesk.

Version 1 (Current): Updated 2017/07/28

Data TypeDownload all or Query/Filter
Images (1.33 GB) 


  • No labels